Measurement of the neutron spin structure function g2(n) and asymmetry A2(n).

The E154 collaboration Abe, K. ; Akagi, T. ; Anderson, B.D. ; et al.
Phys.Lett.B 404 (1997) 377-382, 1997.
Inspire Record 443408 DOI 10.17182/hepdata.27082

We have measured the neutron structure function g$_{2}^{n}$ and the virtual photon-nucleon asymmetry A$_{2}^{n}$ over the kinematic range $0.014\leq x \leq 0.7$ and $1.0 \leq Q^{2} \leq 17.0$ by scattering 48.3 GeV longitudinally polarized electrons from polarized $^{3}$He. Results for A$_{2}^{n}$ are significantly smaller than the $\sqrt{R}$ positivity limit over most of the measured range and data for g$_2^{n}$ are generally consistent with the twist-2 Wandzura-Wilczek prediction. Using our measured g$_{2}^{n}$ we obtain results for the twist-3 reduced matrix element $d_{2}^{n}$, and the integral $\int$g$_{2}^{n}(x)dx$ in the range $0.014\leq x \leq 1.0$. Data from this experiment are combined with existing data for g$_{2}^{n}$ to obtain an average for $d_{2}^{n}$ and the integral $\int$g$_{2}^{n}(x)dx$.

4 data tables

Data measured using the 2.75 degree spectrometer.

Data measured using the 5.5 degree spectrometer.

Measured value of the twist-3 reduced matrix element D2.

More…

Measurement of alpha-s (M(Z)**2) from hadronic event observables at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 51 (1995) 962-984, 1995.
Inspire Record 378545 DOI 10.17182/hepdata.22450

The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.

16 data tables

Final average value of alpha_s. The second (DSYS) error is from the uncertainty on the theoretical part of the calculation.

TAU is 1-THRUST.

RHO is the normalized heavy jet mass MH**2/EVIS**2.

More…