Single- and double-differential inclusive dijet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector using an integrated luminosity of 374 pb^-1. The measurement was performed at large values of the photon virtuality, Q^2, between 125 and 20000 GeV^2. The jets were reconstructed with the k_T cluster algorithm in the Breit reference frame and selected by requiring their transverse energies in the Breit frame, E_T,B^jet, to be larger than 8 GeV. In addition, the invariant mass of the dijet system, M_jj, was required to be greater than 20 GeV. The cross sections are described by the predictions of next-to-leading-order QCD.
The measured differential cross-sections $d\sigma/dQ^2$ for inclusive dijet production. The statistical, uncorrelated systematic and jet-energy-scale (ES) uncertainties are shown separately. The multiplicative corrections, ${C_{\rm{QED}}}$, which have been applied to the data and the corrections for hadronisation and ${Z^{0}}$ effects to be applied to the parton-level NLO QCD calculations, ${C_{\rm{hadr}}\cdot C_{\rm{Z^{0}}}}$, are shown in the last two columns.
Inclusive dijet cross-sections ${d\sigma/dx_{\rm{Bj}}}$. Other details as in the caption to Table 1.
Inclusive dijet cross-sections ${d\sigma/d\overline{E^{jet}_{T,B}}}$. Other details as in the caption to Table 1.
Isolated photon production in deep inelastic ep scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 320pb^-1. Measurements were made in the isolated-photon transverse-energy and pseudorapidity ranges 4 < E_T < 15 GeV and -0.7 < eta < 0.9 for exchanged photon virtualities, Q^2, in the range 10 < Q^2 < 350 GeV and for invariant masses of the hadronic system W_X> 5 GeV. Differential cross sections are presented for inclusive isolated photon production as functions of Q^2, x, E_T and eta. Leading-logarithm parton-shower Monte Carlo simulations and perturbative QCD predictions give a reasonable description of the data over most of the kinematic range.
Measured integrated cross section.
Measured differential cross section DSIG/DET.
Measured differential cross section DSIG/DETARAP.
The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 < Q^2 < 100 GeV^2 and the inelasticity 0.1 < y < 0.6. The K_s and Lambda production cross sections and their ratios are determined. K_s production is compared to the production of charged particles in the same region of phase space. The Lambda - anti-Lambda asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data.
Visible cross section for the production of K0S and LAMBDA(BAR).
Ratio of strange baryon to meson production.
Ratio of K0S to charged hadron production.
Measurements of the cross sections for charged current deep inelastic scattering in e-p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb-1 collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections dsigma/dQ2, dsigma/dx and dsigma/dy are presented for Q2>200 GeV2. The double-differential cross-section d2sigma/dxdQ2 is presented in the kinematic range 280<Q2<30000 GeV2 and 0.015<x<0.65. The measured cross sections are compared with the predictions of the Standard Model.
Total cross section for CC DIS events for two values of the longitudinal polarization of the electron beam.
Total cross section for CC DIS events as a function of the longitudinal polarization of the electron beam.
Differential cross section DSIG/DQ**2 for the two values of longitudinal polarization of the electron beam.
The production of D+- and D0 mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb-1. The measurements cover the kinematic range 5 < Q^2 < 1000 GeV^2, 0.02 < y < 0.7, 1.5 < p_T^D < 15 GeV and eta^D < 1.6. Combinatorial background to the D meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F2^ccbar, to the proton structure function, F2.
Production cross section for (D+ + D-) mesons.
Production cross section for (D0 + DBAR0) mesons not originating from D*+- decays.
Measured D+- cross section as a function of Q**2.
Jet cross sections were measured in charged current deep inelastic e+-p scattering at high boson virtualities Q^2 with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb^-1. Differential cross sections are presented for inclusive-jet production as functions of Q^2, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e+-p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits.
Differential polarized inclusive jet cross sections as a function of jet pseudorapidity.
Differential polarized inclusive jet cross sections as a function of jet pseudorapidity.
Differential polarized inclusive jet cross sections as a function of jet transverse energy.
The production of dijets in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of $61 \pbi$. The dijet cross section has been measured for virtualities of the exchanged virtual photon, $5 < Q^2 < 100 \gev^2$, and $\gamma^{*} p$ centre-of-mass energies, 100 < W < 250 GeV. The jets, identified using the inclusive k_{T} algorithm in the $\gamma^* p$ frame, were required to have a transverse energy $E^*_{T, \rm jet} > 4 \gev$ and the jet with the highest transverse energy was required to have $E^*_{T,\rm jet} > 5 \gev$. All jets were required to be in the pseudorapidity range $-3.5 < \eta^*_{\rm jet} < 0$. The differential cross sections are compared to leading-order predictions and next-to-leading-order QCD calculations based on recent diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data.
Total di-jet cross section SIG as a function of Q**2 .
Distribution of D(SIG)/DQ**2 as a function of Q**2 .
Distribution of D(SIG)/DW as a function of W .
Forward jet cross sections have been measured in neutral current deep inelastic scattering at low Bjorken-x with the ZEUS detector at HERA using an integrated luminosity of ${81.8 \rm pb}^{-1}$. Measurements are presented for inclusive forward jets as well as for forward jets accompanied by a dijet system. The explored phase space, with jet pseudorapidity up to 4.3 is expected to be particularly sensitive to the dynamics of QCD parton evolution at low x. The measurements are compared to fixed-order QCD calculations and to leading-order parton-shower Monte Carlo models.
Differential cross section DSIG/DQ**2 in bins of Q**2 .
Differential cross section DSIG/DX in bins of X .
Differential cross section DSIG/DET(P=4) in bins of ET(P=4) .
Inclusive dijet and trijet production in deep inelastic $ep$ scattering has been measured for $10<Q^2<100$ GeV$^2$ and low Bjorken $x$, $10^{-4}<x_{\rm Bj}<10^{-2}$. The data were taken at the HERA $ep$ collider with centre-of-mass energy $\sqrt{s} = 318 \gev$ using the ZEUS detector and correspond to an integrated luminosity of $82 {\rm pb}^{-1}$. Jets were identified in the hadronic centre-of-mass (HCM) frame using the $k_{T}$ cluster algorithm in the longitudinally invariant inclusive mode. Measurements of dijet and trijet differential cross sections are presented as functions of $Q^2$, $x_{\rm Bj}$, jet transverse energy, and jet pseudorapidity. As a further examination of low-$x_{\rm Bj}$ dynamics, multi-differential cross sections as functions of the jet correlations in transverse momenta, azimuthal angles, and pseudorapidity are also presented. Calculations at $\mathcal{O}(\alpha_{s}^3)$ generally describe the trijet data well and improve the description of the dijet data compared to the calculation at $\mathcal{O}(\alpha_{s}^2)$.
Two jet cross section D(SIG)/DQ**2 as a function of Q**2.
Two jet cross section D(SIG)/DX as a function of X.
Two jet cross section D(SIG)/DET(P=4,RF=CM) as a function of ET(P=4,RF=CM).
Charm production in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Charm has been tagged by reconstructing D^{*+}, D^0, D^{+} and D_s^+ (+ c.c.) charm mesons. The charm hadrons were measured in the kinematic range p_T(D^{*+},D^0,D^{+}) > 3 GeV, p_T(D_s^+)>2 GeV and |\eta(D)| < 1.6 for 1.5 < Q^2 < 1000 GeV^2 and 0.02 < y < 0.7. The production cross sections were used to extract charm fragmentation ratios and the fraction of c quarks hadronising into a particular charm meson in the kinematic range considered. The cross sections were compared to the predictions of next-to-leading-order QCD, and extrapolated to the full kinematic region in p_T(D) and \eta(D) in order to determine the open-charm contribution, F_2^{c\bar{c}}(x,Q^2), to the proton structure function F_2.
Production cross section for all D0 mesons, those not originating fom D* decays and those originating from D* decays.
Production cross section for additional D* mesons (not decaying to D0) and all D* mesons.
Production cross section for D+ mesons.