Measurement of the $b$-quark production cross-section in 7 and 13 TeV $pp$ collisions

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Phys.Rev.Lett. 118 (2017) 052002, 2017.
Inspire Record 1504058 DOI 10.17182/hepdata.79130

Measurements of the cross-section for producing \bquark quarks in the reaction $pp\to b\bar{b} X$ are reported in 7 and 13 TeV collisions at the LHC as a function of the pseudorapidity $\eta$ in the range $2<\eta<5$ covered by the acceptance of the LHCb experiment. The measurements are done using semileptonic decays of $b$-flavored hadrons decaying into a ground-state charmed hadron in association with a muon. The cross-sections in the covered $\eta$ range are $72.0\pm 0.3\pm6.8~\mu$b and $144\pm 1\pm 21~\mu$b for 7 and 13 TeV. The ratio is $2.00\pm0.02\pm0.26$, where the quoted uncertainties are statistical and systematic, respectively. The agreement with theoretical expectation is good at 7 TeV, but differs somewhat at 13 TeV. The measured ratio of cross-sections is larger at lower $\eta$ than the model prediction.

2 data tables match query

The cross-section as a function of $\eta$ for $pp \to H_b X$, where $H_b$ is a hadron that contains either a $b$ or a $\bar{b}$ quark, but not both, at center-of-mass energy of 7 TeV. The first uncertainty is statistical and the second systematic. To get the differential cross-section in each interval multiply by a factor two.

The cross-section as a function of $\eta$ for $pp \to H_b X$, where $H_b$ is a hadron that contains either a $b$ or a $\bar{b}$ quark, but not both, at center-of-mass energy of 13 TeV. The first uncertainty is statistical and the second systematic. To get the differential cross-section in each interval multiply by a factor two.


Measurement of the inelastic $pp$ cross-section at a centre-of-mass energy of 13 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 06 (2018) 100, 2018.
Inspire Record 1665223 DOI 10.17182/hepdata.89782

The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13\,TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum $p>2$\,GeV/$c$ in the pseudorapidity range $2<\eta<5$ is determined to be $\sigma_{\rm acc}= 62.2 \pm 0.2 \pm 2.5$\,mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section $\sigma_{\rm inel}= 75.4 \pm 3.0 \pm 4.5$\,mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7\,TeV is also reported.

3 data tables match query

The cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, yielding one or more prompt long-lived charged particles in the kinematic range $p > 2.0$ GeV/$c$ and $2.0 < \eta < 5.0$ (LHCb acceptance). The quoted uncertainty that is almost completely systematic in nature as the purely statistical uncertainty is found negligible. A particle is long-lived if its proper (mean) lifetime is larger than 30 ps, and it is prompt if it is produced directly in the $pp$ interaction or if none of its ancestors is long-lived.

The total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, extrapolated from Monte Carlo in similar way to measurement at $\sqrt{s}=7$ TeV.

Update of the total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV due to improved calibration of the luminosity scale.


Version 2
Measurement of forward $W$ and $Z$ boson production in association with jets in proton-proton collisions at $\sqrt{s}=8$~TeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
JHEP 05 (2016) 131, 2016.
Inspire Record 1454404 DOI 10.17182/hepdata.78541

The production of $W$ and $Z$ bosons in association with jets is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 $\pm$ 0.02 fb$^{-1}$. The $W$ boson is identified using its decay to a muon and a neutrino, while the $Z$ boson is identified through its decay to a muon pair. Total cross-sections are measured and combined into charge ratios, asymmetries, and ratios of $W+$jet and $Z$+jet production cross-sections. Differential measurements are also performed as a function of both boson and jet kinematic variables. All results are in agreement with Standard Model predictions.

2 data tables match query

The correlation matrix for the systematic uncertainties on the $W^+j$, $W^-j$ and $Zj$ production cross-section measurements presented in Tables 2 and 5 in bins of $\eta^{\rm jet}$. The first four rows/columns correspond to the $W^+j$ cross-section in bins of $\eta^{\rm jet}$, the middle four correspond to the $W^-j$ cross-section in bins of $\eta^{\rm jet}$ and the final four correspond to the $Zj$ cross-section in bins of $\eta^{\rm jet}$. The matrix is used to calculate the ratios of $Wj$ to $Zj$ production and the charge ratio and asymmetry of $Wj$ production in the total fiducial region.

The correlation matrix for the systematic uncertainties on the $W^+j$, $W^-j$ and $Z^0 j$ production cross-section measurements presented in Tables 2 and 5 in bins of $\eta^{\rm jet}$. The matrix is used to calculate the ratios of $Wj$ to $Z^0 j$ production and the charge ratio and asymmetry of $Wj$ production in the total fiducial region.


Measurement of the inelastic $pp$ cross-section at a centre-of-mass energy of $\sqrt{s}=7$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 02 (2015) 129, 2015.
Inspire Record 1333223 DOI 10.17182/hepdata.69845

The cross-section for inelastic proton-proton collisions, with at least one prompt long-lived charged particle of transverse momentum $p_{\rm T}>0.2$ GeV/$c$ in the pseudorapidity range $2.0<\eta<4.5$, is measured by the LHCb experiment at a centre-of-mass energy of $\sqrt{s}=7$ TeV. The cross-section in this kinematic range is determined to be $\sigma_{\rm inel}^{\rm acc} = 55.0 \pm 2.4$ mb within the spectrometer acceptance with an experimental uncertainty that is dominated by systematic contributions. Extrapolation to the full phase space, using PYTHIA 6, yields $\sigma_{\rm inel} = 66.9 \pm 2.9 \pm 4.4$ mb, where the first uncertainty is experimental and the second is due to the extrapolation.

2 data tables match query

The cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV, yielding one or more prompt long-lived charged particles in the kinematic range $p_T > 0.2$ GeV/$c$ and $2.0 < \eta < 4.5$ (LHCb acceptance). The quoted uncertainty that is almost completely systematic in nature as the purely statistical uncertainty is two orders of magnitude smaller.

The total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV, extrapolated using PYTHIA6 and different soft QCD tunes provided by PYTHIA 8.201 to estimate its uncertainty.


Cross sections for the reactions $e^+ e^-\to K_S^0 K_L^0$, $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ from events with initial-state radiation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 092002, 2014.
Inspire Record 1287920 DOI 10.17182/hepdata.64506

We study the processes $e^+ e^-\to K_S^0 K_L^0 \gamma$, $K_S^0 K_L^0 \pi^+\pi^-\gamma$, $K_S^0 K_S^0 \pi^+\pi^-\gamma$, and $K_S^0 K_S^0 K^+K^-\gamma$, where the photon is radiated from the initial state, providing cross section measurements for the hadronic states over a continuum of center-of-mass energies. The results are based on 469 fb$^{-1}$ of data collected with the BaBar detector at SLAC. We observe the $\phi(1020)$ resonance in the $K_S^0 K_L^0$ final state and measure the product of its electronic width and branching fraction with about 3% uncertainty. We present a measurement of the $e^+ e^-\to K_S^0 K_L^0 $ cross section in the energy range from 1.06 to 2.2 GeV and observe the production of a resonance at 1.67 GeV. We present the first measurements of the $e^+ e^-\to K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ cross sections, and study the intermediate resonance structures. We obtain the first observations of \jpsi decay to the $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ final states.

1 data table match query

The product WIDTH(E+ E- --> J/PSI) * BR(J/PSI --> F2PRIME(1525) K+ K-) * BR(F2PRIME(1525) --> KS KS) and the J/PSI branching fraction.


Version 2
Precise Measurement of the $e^+ e^- \to \pi^+\pi^- (\gamma)$ Cross Section with the Initial-State Radiation Method at BABAR

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 86 (2012) 032013, 2012.
Inspire Record 1114155 DOI 10.17182/hepdata.115140

A precise measurement of the cross section of the process $e^+e^-\to\pi^+\pi^-(\gamma)$ from threshold to an energy of 3GeV is obtained with the initial-state radiation (ISR) method using 232fb$^{-1}$ of data collected with the BaBar detector at $e^+e^-$ center-of-mass energies near 10.6GeV. The ISR luminosity is determined from a study of the leptonic process $e^+e^-\to\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$, which is found to agree with the next-to-leading-order QED prediction to within 1.1%. The cross section for the process $e^+e^-\to\pi^+\pi^-(\gamma)$ is obtained with a systematic uncertainty of 0.5% in the dominant $\rho$ resonance region. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured $\pi\pi$ cross section from threshold to 1.8GeV is $(514.1 \pm 2.2({\rm stat}) \pm 3.1({\rm syst}))\times 10^{-10}$.

3 data tables match query

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ The cross section values (nb) for 337 CM energy intervals (GeV) from 0.3 to 3 GeV. The cross section is bare (excluding vacuum polarization) and includes the emission of final state photons. ***WARNING*** The quoted errors are from the diagonal elements of the statistical covariance matrix (reported on the Table titled "Bare cross-section statistical covariance") and added quadratically with the systematic uncertainties (reported in the Table titled "Bare cross-section systematic uncertainties"). These errors can be used when plotting the results as they are representative of the precision achieved. However, any calculation involving the cross section over some energy range MUST use, to be meaningful, the full statistical covariance matrix and the proper correlations of the systematic uncertainties. ***WARNING*** The Bare cross-section statistical covariance is reported as additional resource in YAML, since its size exceeds the maximum size of 10 MB for the library hepdata_lib. It is a statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV, matching the ones of this table.

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ systematic uncertainties contributions and total systematic uncertainties, for 337 CM energy intervals (GeV), from 0.3 to 3 GeV. All systematics contributions are each 100% correlated in all energy bins.

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV.


Evidence of a broad structure at an invariant mass of 4.32- GeV/c**2 in the reaction e+ e- ---> pi+ pi- psi(2S) measured at BaBar

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Bona, M. ; et al.
Phys.Rev.Lett. 98 (2007) 212001, 2007.
Inspire Record 729388 DOI 10.17182/hepdata.19344

We present a measurement of the cross section of the process $e^+e^-\to\pi^+pi^-\psi(2S)$ from threshold up to 8 GeV center-of-mass energy using events containing initial-state radiation, produced at the PEP-II $e^+e^-$ storage rings. The study is based on 298 fb$^{-1}$ of data recorded with the BaBar detector. A structure is observed in the cross-section not far above threshold, near 4.32 GeV. We also investigate the compatibility of this structure with the Y(4260) previously reported by this experiment.

1 data table match query

The measured c.m. energy dependence of the cross section with statistical errors only.. Bins with no recorded data are shown as a 'dash'.


Production and decay of XI(c)0 at BABAR

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Boutigny, D. ; et al.
Phys.Rev.Lett. 95 (2005) 142003, 2005.
Inspire Record 679961 DOI 10.17182/hepdata.27164

Using 116.1 fb^-1 of data collected by the BABAR detector, we present an analysis of Xic0 production in B decays and from the ccbar continuum, with the Xic0 decaying into Omega- K+ and Xi- pi+ final states. We measure the ratio of branching fractions B(Xic0 -> Omega- K+)/B(Xic0 -> Xi- pi+) to be 0.294 +- 0.018 +- 0.016, where the first uncertainty is statistical and the second is systematic. The Xic0 momentum spectrum is measured on and 40 MeV below the Upsilon(4S) resonance. From these spectra the branching fraction product B(B -> Xic0 X) x B(Xic0 -> Xi- pi+) is measured to be (2.11 +- 0.19 +- 0.25) x 10^-4 and the cross-section product sigma(e+ e- -> Xic0 X) x B(Xic0 -> Xi- pi+) from the continuum is measured to be (388 +- 39 +- 41) fb at a center-of-mass energy of 10.58 GeV.

2 data tables match query

Measured cross section on and off the UPSILON(4S) resonance for the inclusive producton of XI/C0 times its branching ratio to XI- PI+. with the off-resonacne data are scaled to a centre-of-mass energy of 10.580 GeV.

Total measured cross section for XI/C0 production for the continuum data scaled to a centre-of-mass energy of 10.580 GeV.


Measurement of sigma(pp -> b anti-b X) at \sqrt(s)=7 TeV in the forward region

The LHCb collaboration Aaij, R. ; Abellan Beteta, C. ; Adeva, B. ; et al.
Phys.Lett.B 694 (2010) 209-216, 2010.
Inspire Record 867355 DOI 10.17182/hepdata.60039

Decays of $b$ hadrons into final states containing a $D^0$ meson and a muon are used to measure the $b\bar{b}$ production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. In the pseudorapidity interval $2 < \eta < 6$ and integrated over all transverse momenta we find that the average cross-section to produce $b$-flavoured or $\bar{b}$-flavoured hadrons is ($75.3 \pm 5.4 \pm 13.0$) microbarns.

2 data tables match query

The cross section for b-flavoured hadrons (HADRON/B) as a function of pseudorapidity in proton-proton collisions at a centre-of-mass energy of 7 TeV. Cross sections are shown using fragmentation fractions both from LEP and from the Tevatron. See comment above regarding this latter point.

The cross section for b-flavoured hadrons (HADRON/B) over the pseudorapidity range 2.0-6.0 in proton-proton collisions at a centre-of-mass energy of 7 TeV. Cross sections are shown using fragmentation fractions both from LEP and from the Tevatron. See comment above regarding this latter point.


Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.

1 data table match query

Systematic uncertainties in the double differential cross-sections in interval regions of $y^{Z}$ and $p_{T}^{Z}$, presented in percentage. The contributions from efficiency (Eff), background (BKG), final state radiation (FSR), closure test (Closure), and alignment and calibration (Alignment) are shown.