We measure the complete set of angular coefficients $J_i$ for exclusive $\bar{B} \to D^* \ell \bar{\nu}_\ell$ decays ($\ell = e, \mu$). Our analysis uses the full $711\,\mathrm{fb}^{-1}$ Belle data set with hadronic tag-side reconstruction. The results allow us to extract the form factors describing the $B \to D^*$ transition and the Cabibbo-Kobayashi-Maskawa matrix element $|V_{\rm cb}|$. Using recent lattice QCD calculations for the hadronic form factors, we find $|V_{\rm cb}| = (41.0 \pm 0.7) \times 10^3 $ using the BGL parameterization, compatible with determinations from inclusive semileptonic decays. We search for lepton flavor universality violation as a function of the hadronic recoil parameter $w$, and investigate the differences of the electron and muon angular distributions. We find no deviation from Standard Model expectations.
Data of the decay $\bar{B}^0 \to D^* e \nu_e$.
Data of the decay $\bar{B}^0 \to D^* \mu \nu_\mu$.
Data of the decay $\bar{B}^+ \to D^* e \nu_e$.
We present a measurement of the differential shapes of exclusive $B\to D^* \ell \bar{\nu}_\ell$ ($B = B^-, \bar{B}^0 $ and $\ell = e, \mu$) decays with hadronic tag-side reconstruction for the full Belle data set of $711\,\mathrm{fb}^{-1}$ integrated luminosity. We extract the Caprini-Lellouch-Neubert (CLN) and Boyd-Grinstein-Lebed (BGL) form factor parameters and use an external input for the absolute branching fractions to determine the Cabibbo-Kobayashi-Maskawa matrix element and find $|V_{cb}|_\mathrm{CLN} = (40.1\pm0.9)\times 10^{-3}$ and $|V_{cb}|_\mathrm{BGL} = (40.6\pm 0.9)\times 10^{-3}$ with the zero-recoil lattice QCD point $\mathcal{F}(1) = 0.906 \pm 0.013$. We also perform a study of the impact of preliminary beyond zero-recoil lattice QCD calculations on the $|V_{cb}|$ determinations. Additionally, we present the lepton flavor universality ratio $R_{e\mu} = \mathcal{B}(B \to D^* e \bar{\nu}_e) / \mathcal{B}(B \to D^* \mu \bar{\nu}_\mu) = 0.990 \pm 0.021 \pm 0.023$, the electron and muon forward-backward asymmetry and their difference $\Delta A_{FB}=0.022\pm0.026\pm 0.007$, and the electron and muon $D^*$ longitudinal polarization fraction and their difference $\Delta F_L^{D^*} = 0.034 \pm 0.024 \pm 0.007$. The uncertainties quoted correspond to the statistical and systematic uncertainties, respectively.
Bins used in the average spectrum (equivalent to the B0 case binning)
Bins for each data point for B0 and B+ cases separately.
The fully averaged measured shape. The 40 entries correspond to 10 bins in w, cosThetaL, cosThetaV, and chi. For the binning see the file 'Binning.yaml'.
We present the measurement of the first to fourth order moments of the four-momentum transfer squared, $q^2$, of inclusive $B \rightarrow X_c \ell^+ \nu_{\ell}$ decays using the full Belle data set of 711 $\mathrm{fb}^{-1}$ of integrated luminosity at the $\Upsilon(4S)$ resonance where $\ell = e, \mu$. The determination of these moments and their systematic uncertainties open new pathways to determine the absolute value of the CKM matrix element $V_{cb}$ using a reduced set of matrix elements of the heavy quark expansion. In order to identify and reconstruct the $X_c$ system, we reconstruct one of the two $B$-mesons using machine learning techniques in fully hadronic decay modes. The moments are measured with progressively increasing threshold selections on $q^2$ starting with a lower value of 3.0 $\mathrm{GeV}^2$ in steps of 0.5 $\mathrm{GeV}^2$ up to a value of 10.0 $\mathrm{GeV}^2$. The measured moments are further unfolded, correcting for reconstruction and selection effects as well as QED final state radiation. We report the moments separately for electron and muon final states and observe no lepton flavor universality violating effects.
First $q^2$ moment in GeV$^2$ for the electron channel with lower $q^2$ thresholds ranging from $3.0$ GeV$^2$ to $10.0$ GeV$^2$ in steps of $0.5$ GeV$^2$.
Second $q^2$ moment in GeV$^4$ for the electron channel with lower $q^2$ thresholds ranging from $3.0$ GeV$^2$ to $10.0$ GeV$^2$ in steps of $0.5$ GeV$^2$.
Third $q^2$ moment in GeV$^6$ for the electron channel with lower $q^2$ thresholds ranging from $3.0$ GeV$^2$ to $10.0$ GeV$^2$ in steps of $0.5$ GeV$^2$.
The first measurements of differential branching fractions of inclusive semileptonic ${B \to X_u \, \ell^+\, \nu_{\ell}}$ decays are performed using the full Belle data set of 711 fb$^{-1}$ of integrated luminosity at the $\Upsilon(4S)$ resonance and for $\ell = e, \mu$. Differential branching fractions are reported as a function of the lepton momentum, the four-momentum-transfer squared, light-cone momenta, the hadronic mass, and the hadronic mass squared. They are obtained by subtracting the backgrounds from semileptonic ${B \to X_c \, \ell^+\, \nu_{\ell}}$ decays and other processes, and corrected for resolution and acceptance effects. The measured distributions are compared to predictions from inclusive and hybrid ${B \to X_u \, \ell^+\, \nu_{\ell}}$ calculations.
The measured differential branching fractions as a function of the lepton energy in the $B$ rest frame ($E_\ell^B$).
The measured differential branching fractions as a function of the four-momentum-transfer squared of the $B$ to the $X_u$ system $q^{2}$.
The measured differential branching fractions as a function of the invariant hadronic mass of the $X_u$ system ($M_X$).
The precise determination of the CKM matrix element $\left| V_{cb}\right|$ is important for carrying out tests of the flavour sector of the Standard Model. In this article we present a preliminary analysis of the $\bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell$ decay mode and its charge conjugate, selected in events that contain a fully reconstructed $B$-meson, using 772 million $e^+ \, e^- \to \Upsilon(4S) \to B \bar B$ events recorded by the Belle detector at KEKB. Unfolded differential decay rates of four kinematic variables fully describing the $\bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell$ decay in the $B$-meson rest frame are presented. We measure the total branching fraction $\mathcal{B}( \bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell ) = \left(4.95 \pm 0.11 \pm 0.22 \right) \times 10^{-2}$, where the errors are statistical and systematic respectively. The value of $\left|V_{cb} \right|$ is determined to be $\left( 37.4 \pm 1.3 \right) \times 10^{-3}$. Both results are in good agreement with current world averages.
The unfolded differential rate as a function of $w$.
The unfolded differential rate as a function of $\cos\theta_\nu$.
The unfolded differential rate as a function of $\cos\theta_\ell$.
We report a study of radiative decays of \chi_{bJ}(1P)(J=0,1,2) mesons into 74 hadronic final states comprising charged and neutral pions, kaons, protons; out of these, 41 modes are observed with at least 5 standard deviation significance. Our measurements not only improve the previous measurements by the CLEO Collaboration but also lead to first observations in many new modes. The large sample allows us to probe the total decay width of the \chi_{b0}(1P). In the absence of a statistically significant result, a 90% confidence-level upper limit is set on the width at \Gamma_{total}< 2.4 MeV. Our results are based on 24.7 fb^{-1} of e+e- collision data recorded by the Belle detector at the \Upsilon(2S) resonance, corresponding to (157.8\pm3.6)\times10^6 \Upsilon(2S) decays.
Product branching fractions ${\cal B}[\Upsilon(2S)\to\gamma\chi_{b0}(1P)]\times{\cal B}[\chi_{b1}(1P)\to h_{i}]$ ($\times 10^{-5}$) and statistical significance for $\chi_{b0}(1P)$ state. Upper limits at the 90% CL are calculated for modes having significance less than 3$\sigma$.
Product branching fractions ${\cal B}[\Upsilon(2S)\to\gamma\chi_{b1}(1P)]\times{\cal B}[\chi_{b1}(1P)\to h_{i}]$ ($\times 10^{-5}$) and statistical significance for $\chi_{b1}(1P)$ state. Upper limits at the 90% CL are calculated for modes having significance less than 3$\sigma$.
Product branching fractions ${\cal B}[\Upsilon(2S)\to\gamma\chi_{b2}(1P)]\times{\cal B}[\chi_{b1}(1P)\to h_{i}]$ ($\times 10^{-5}$) and statistical significance for $\chi_{b2}(1P)$ state. Upper limits at the 90% CL are calculated for modes having significance less than 3$\sigma$.
We present a search for a non-Standard-Model invisible particle $X^0$ in the mass range $0.1\textrm{-}1.8 \,{\rm GeV}/{c^2}$ in $B^{+}\to e^{+} X^{0}$ and $B^{+}\to \mu^{+} X^{0}$ decays. The results are obtained from a $711~{\rm fb}^{-1}$ data sample that corresponds to $772 \times 10^{6} B\bar{B}$ pairs, collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. One $B$ meson is fully reconstructed in a hadronic mode to determine the momentum of the lepton of the signal decay in the rest frame of the recoiling partner $B$ meson. We find no evidence of a signal and set upper limits on the order of $10^{-6}$.
Summary of upper limits at the 90$\%$ CL for $B^+ \to e^+ X^0$.
Summary of upper limits at the 90$\%$ CL for $B^+ \to \mu^+ X^0$.
We present a measurement of angular observables, $P_4'$, $P_5'$, $P_6'$, $P_8'$, in the decay $B^0 \to K^\ast(892)^0 \ell^+ \ell^-$, where $\ell^+\ell^-$ is either $e^+e^-$ or $\mu^+\mu^-$. The analysis is performed on a data sample corresponding to an integrated luminosity of $711~\mathrm{fb}^{-1}$ containing $772\times 10^{6}$ $B\bar B$ pairs, collected at the $\Upsilon(4S)$ resonance with the Belle detector at the asymmetric-energy $e^+e^-$ collider KEKB. Four angular observables, $P_{4,5,6,8}'$ are extracted in five bins of the invariant mass squared of the lepton system, $q^2$. We compare our results for $P_{4,5,6,8}'$ with Standard Model predictions including the $q^2$ region in which the LHCb collaboration reported the so-called $P_5'$ anomaly.
Results of the angular analysis of $B^0 \to K^\ast(892)^0 \ell^+ \ell^-$ (where $\ell = e,\mu$) in five bins of $q^2$, the di-lepton invariant mass squared.
We present a determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ using the decay $B\to D\ell\nu_\ell$ ($\ell=e,\mu$) based on 711 fb$^{-1}$ of $e^+e^-\to \Upsilon(4S)$ data recorded by the Belle detector and containing $772 \times 10^6$ $B\bar{B}$ pairs. One $B$ meson in the event is fully reconstructed in a hadronic decay mode while the other, on the signal side, is partially reconstructed from a charged lepton and either a $D^+$ or $D^0$ meson in a total of 23 hadronic decay modes. The isospin-averaged branching fraction of the decay $B\to D\ell\nu_\ell$ is found to be $\mathcal{B}(B^0 \to D^- \ell^+ \nu_{\ell})=(2.31\pm 0.03(\mathrm{stat})\pm 0.11(\mathrm{syst}))\%$. Analyzing the differential decay rate as a function of the hadronic recoil with the parameterization of Caprini, Lelouch and Neubert and using the form-factor prediction $\mathcal{G}(1)=1.0541\pm 0.0083$ calculated by FNAL/MILC, we obtain $\eta_\mathrm{EW}|V_{cb}|=(40.12\pm 1.34)\times 10^{-3}$, where $\eta_\mathrm{EW}$ is the electroweak correction factor. Alternatively, assuming the model-independent form-factor parameterization of Boyd, Grinstein and Lebed and using lattice QCD data from the FNAL/MILC and HPQCD collaborations, we find $\eta_\mathrm{EW}|V_{cb}|=(41.10 \pm 1.14)\times 10^{-3}$.
The values of $\Delta\Gamma_i/\Delta w$ with the statistical and systematic uncertainties in the ${B^+ \to \bar{D}^0 e^+ \nu_{e}}, {B^+ \to \bar{D}^0 \mu^+ \nu_{\mu}}, {B^0 \to D^- e^+ \nu_{e}},$ and ${B^0 \to D^- \mu^+ \nu_{\mu}}$ sub-samples. The recoil variable, $w$, is defined as the product of the 4-velocities of the $B$ and $D$ mesons. The value of $w_\rm{max}$ is 1.59209 for the sub-samples with a charged $B$ meson and 1.58901 for the sub-samples with a neutral $B$ meson. The $\Delta\Gamma_i/\Delta w$ results are statistically uncorrelated amongst bins and samples. The systematic correlations between bins and samples are given in the file SubsampleResults.csv of the arXiv source.
The values of $\Delta\Gamma_i/\Delta w$ obtained in different bins of $w$ after combination of the ${B^+ \to \bar{D}^0 e^+ \nu_{e}}, {B^+ \to \bar{D}^0 \mu^+ \nu_{\mu}}, {B^0 \to D^- e^+ \nu_{e}},$ and ${B^0 \to D^- \mu^+ \nu_{\mu}}$ sub-samples. The value of $w_\rm{max} = 1.59055$ is the average of the values for charged and neutral $B$ mesons.
The correlation matrix of the systematic error. The value of $w_\rm{max} = 1.59055$ is the average of the values for charged and neutral $B$ mesons.
We report a measurement of the differential cross section of $\pi^0$ pair production in single-tag two-photon collisions, $\gamma^* \gamma \to \pi^0 \pi^0$, in $e^+ e^-$ scattering. The cross section is measured for $Q^2$ up to 30 GeV$^2$, where $Q^2$ is the negative of the invariant mass squared of the tagged photon, in the kinematic range 0.5 GeV < W < 2.1 GeV and $|\cos \theta^*|$ < 1.0 for the total energy and pion scattering angle, respectively, in the $\gamma^* \gamma$ center-of-mass system. The results are based on a data sample of 759 fb$^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. The transition form factor of the $f_0(980)$ and that of the $f_2(1270)$ with the helicity-0, -1, and -2 components separately are measured for the first time and are compared with theoretical calculations.
$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=3.45 GeV$^2$.
$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=4.46 GeV$^2$.
$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=5.47 GeV$^2$.