Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high energy tail of the T2K beam. The results are presented as a function of laboratory momentum in 2 intervals of the laboratory polar angle covering the range from 20 up to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published pion results and the new kaon data, the K+/\pi+ ratios are computed.
The measured K+ production cross section and the K+/PI+ cross section ratio for the angular range 20 to 140 mrad. The errors on the ratios are statistical only.
The measured K+ production cross section and the K+/PI+ cross section ratio for the angular range 140 to 240 mrad. The errors on the ratios are statistical only.
The charged particle production in proton-proton collisions is studied with the LHCb detector at a centre-of-mass energy of ${\sqrt{s} =7}$TeV in different intervals of pseudorapidity $\eta$. The charged particles are reconstructed close to the interaction region in the vertex detector, which provides high reconstruction efficiency in the $\eta$ ranges $-2.5<\eta<-2.0$ and $2.0<\eta<4.5$. The data were taken with a minimum bias trigger, only requiring one or more reconstructed tracks in the vertex detector. By selecting an event sample with at least one track with a transverse momentum greater than 1 GeV/c a hard QCD subsample is investigated. Several event generators are compared with the data; none are able to describe fully the multiplicity distributions or the charged particle density distribution as a function of $\eta$. In general, the models underestimate the charged particle production.
Charged particle multiplicity distribution in minimum bias events for different pseudorapidity bins. The first quoted uncertainty is statistical and the second is systematic.
Charged particle multiplicity distribution in hard QCD events for different pseudorapidity bins. The first quoted uncertainty is statistical and the second is systematic.
Charged particle multiplicity distribution for minimum bias events in the full pseudorapidity range. The first quoted uncertainty is statistical and the second is systematic.
We report measurements of the charge-separated $W^{+(-)} \to e^{+(-)} + \nu_e(\bar{\nu}_e)$ and $Z/\gamma^* \to e^+e^-$ production cross sections at mid-rapidity in proton-proton collisions at $\sqrt{s}$ = 500 GeV. These results are based on 13.2 pb$^{-1}$ of data recorded in 2009 by the STAR detector at RHIC. Production cross sections for W bosons that decay via the $e \nu$ channel were measured to be $\sigma(pp \to W^+ X) \cdot BR(W^+ \to e^+ \nu_e)$ = 117.3 \pm 5.9(stat) \pm 6.2(syst) \pm 15.2(lumi) pb, and $\sigma(pp \to W^- X) \cdot BR(W^- \to e^- \bar{\nu}_e)$ = 43.3 \pm 4.6(stat) \pm 3.4(syst) \pm 5.6(lumi) pb. For $Z/\gamma^*$ production, $\sigma(pp \to Z/\gamma^* X) \cdot BR(Z/\gamma^* \to e^+ e^-)$ = 7.7 \pm 2.1(stat) $^{+0.5}_{-0.9}$(syst) \pm 1.0(lumi) pb for di-lepton invariant masses $m_{e^+e^-}$ between 70 and 110 GeV/$c^2$. First measurements of the W cross section ratio, $\sigma(pp \to W^+ X) / \sigma(pp \to W^- X)$, at $\sqrt{s}$ = 500 GeV are also reported. Theoretical predictions, calculated using recent parton distribution functions, are found to agree with the measured cross sections.
(Color online) Trigger rate as a function of vernier scan beam displacement in the x and y directions. The transverse beam widths ($\sigma_{x}$ and $\sigma_{y}$) and maximum trigger rate ($R^{max}_{ver}$) were extracted from the fit, which is superimposed.
(Color online) Trigger rate as a function of vernier scan beam displacement in the x and y directions. The transverse beam widths ($\sigma_{x}$ and $\sigma_{y}$) and maximum trigger rate ($R^{max}_{ver}$) were extracted from the fit, which is superimposed.
(Color online) Distributions of $E^{e}_{T}$ for W candidate events after sequentially applying the selection criteria de- scribed in Secs. IV A and IV B.
STAR's measurements of directed flow ($v_1$) around midrapidity for $\pi^{\pm}$, K$^{\pm}$, K$_S^0$, $p$ and $\bar{p}$ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative $v_1(y)$ slope is observed for most of produced particles ($\pi^{\pm}$, K$^{\pm}$, K$_{S}^{0}$ and $\bar{p}$). In 5-30% central collisions a sizable difference is present between the $v_1(y)$ slope of protons and antiprotons, with the former being consistent with zero within errors. The $v_1$ excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. For those models which have calculations of $v_1$ for both pions and protons, none of them can describe $v_1(y)$ for pions and protons simultaneously. The hydrodynamics model with a tilted source as currently implemented cannot explain the centrality dependence of the difference between the $v_1(y)$ slopes of protons and antiprotons.
$v_1$ for $\pi^{\pm}$, $K^{\pm}$, $K_{S}^{0}$ (left panel), p and $\bar{p}$ (right panel) as a function of rapidity for 10-70$\%$ $Au + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV. The lines present the linear fit to the $\pi^{\pm}$, $K^{\pm}$, $K_{S}^{0}$, p and $\bar{p}$’s $v_1$(y) respectively. Data points around $y = 0.29$ are slightly shifted horizontally to avoid overlapping.
$v_1$ for $\pi^{\pm}$, $K^{\pm}$, $K_{S}^{0}$ (left panel), p and $\bar{p}$ (right panel) as a function of rapidity for 10-70$\%$ $Au + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV. The lines present the linear fit to the $\pi^{\pm}$, $K^{\pm}$, $K_{S}^{0}$, p and $\bar{p}$’s $v_1$(y) respectively. Data points around $y = 0.29$ are slightly shifted horizontally to avoid overlapping.
$v_1$ for $\pi^{\pm}$, $K^{\pm}$, $K_{S}^{0}$ (left panel), p and $\bar{p}$ (right panel) as a function of rapidity for 10-70$\%$ $Au + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV. The lines present the linear fit to the $\pi^{\pm}$, $K^{\pm}$, $K_{S}^{0}$, p and $\bar{p}$’s $v_1$(y) respectively. Data points around $y = 0.29$ are slightly shifted horizontally to avoid overlapping.
A measurement of the J/psi and psi(2S) production cross sections in pp collisions at sqrt(s)=7 TeV with the CMS experiment at the LHC is presented. The data sample corresponds to an integrated luminosity of 37 inverse picobarns. Using a fit to the invariant mass and decay length distributions, production cross sections have been measured separately for prompt and non-prompt charmonium states, as a function of the meson transverse momentum in several rapidity ranges. In addition, cross sections restricted to the acceptance of the CMS detector are given, which are not affected by the polarization of the charmonium states. The ratio of the differential production cross sections of the two states, where systematic uncertainties largely cancel, is also determined. The branching fraction of the inclusive B to psi(2S) X decay is extracted from the ratio of the non-prompt cross sections to be: BR(B to psi(2S) X) = (3.08 +/- 0.12(stat.+syst.) +/- 0.13(theor.) +/- 0.42(BR[PDG])) 10^-3
The (unpolarised) acceptance corrected J/PSI cross section times branching ratio to MU+ MU- for (PROMPT) and NON-PROMPT) production in the |rapidity| bin 0.0-0.9.
The (unpolarised) acceptance corrected J/PSI cross section times branching ratio to MU+ MU- for (PROMPT) and NON-PROMPT) production in the |rapidity| bin 0.9-1.2.
The (unpolarised) acceptance corrected J/PSI cross section times branching ratio to MU+ MU- for (PROMPT) and NON-PROMPT) production in the |rapidity| bin 1.2-1.6.
A measurement of the exclusive two-photon production of muon pairs in proton-proton collisions at sqrt(s)= 7 TeV, pp to p mu^+ mu^- p, is reported using data corresponding to an integrated luminosity of 40 inverse picobarns. For muon pairs with invariant mass greater than 11.5 GeV, transverse momentum pT(mu) > 4 GeV and pseudorapidity |eta(mu)| < 2.1, a fit to the dimuon pt(mu^+ mu^-) distribution results in a measured cross section of sigma(pp to p mu^+ mu^- p) = 3.38 [+0.58 -0.55] (stat.) +/- 0.16 (syst.) +/- 0.14 (lumi.) pb, consistent with the theoretical prediction evaluated with the event generator Lpair. The ratio to the predicted cross section is 0.83 [+0.14-0.13] (stat.) +/- 0.04 (syst.) +/- 0.03 (lumi.). The characteristic distributions of the muon pairs produced via photon-photon fusion, such as the muon acoplanarity, the muon pair invariant mass and transverse momentum agree with those from the theory.
Cross section for the for the process P P --> P MU+ MU- P.
We present STAR measurements of azimuthal anisotropy by means of the two- and four-particle cumulants $v_2$ ($v_2\{2\}$ and $v_2\{4\}$) for Au+Au and Cu+Cu collisions at center of mass energies $\sqrt{s_{_{\mathrm{NN}}}} = 62.4$ and 200 GeV. The difference between $v_2\{2\}^2$ and $v_2\{4\}^2$ is related to $v_{2}$ fluctuations ($\sigma_{v_2}$) and nonflow $(\delta_{2})$. We present an upper limit to $\sigma_{v_2}/v_{2}$. Following the assumption that eccentricity fluctuations $\sigma_{\epsilon}$ dominate $v_2$ fluctuations $\frac{\sigma_{v_2}}{v_2} \approx \frac{\sigma_{\epsilon}}{\epsilon}$ we deduce the nonflow implied for several models of eccentricity fluctuations that would be required for consistency with $v_2\{2\}$ and $v_2\{4\}$. We also present results on the ratio of $v_2$ to eccentricity.
The two-particle cumulant $v_2\{2\}^2$ for Au+Au collisions at 200 and 62.4 GeV. Results are shown with like-sign combinations (LS) and charge-independent results (CI) for $0.15 < p_T < 2.0$ GeV/$c$.
The same as the left but for Cu+Cu collisions. The systematic errors are shown as thin lines with wide caps at the ends and statistical errors are shown as thick lines with small caps at the end. Statistical and systematic errors are very small.
The difference of charge-independent (CI) v2{2} and like-sign (LS) $v_2\{2\}$ for Au+Au and Cu+Cu collisions at 200 (top panel) and 62.4 (bottom panel) GeV vs. the log of $\langle dN_{ch}/d\eta\rangle$.The statistical errors are smaller than the marker size and not visible for most of the data.
Scaled momentum distributions for the strange hadrons K0s and Lambda/bar Lambda were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb-1. The evolution of these distributions with the photon virtuality, Q2, was studied in the kinematic region 10
The measured scaled momentum distributions for K0S production as a function of Q^2 in six XP regions.
The measured scaled momentum distributions for K0S production as a function of XP in five Q**2 regions.
The measured scaled momentum distributions for K0S production as a function of XP in two Q^2 regions.
Measurements of the normalized rapidity (y) and transverse momentum (qT) distributions of Drell-Yan muon and electron pairs in the Z-boson mass region (60
Normalized differential cross section for Drell-Yan lepton pairs in the Z0 mass region as a function of the absolute value of rapidity of the Z0, for separate muon and lepton channels and the combined measurement. The error shown is the combined statistical and systematic.
Normalized differential cross section for Drell-Yan lepton pairs in the Z0 mass region as a function of the transverse momentum of the Z0, for separate muon and lepton channels and the combined measurement. The error shown is the combined statistical and systematic.
Covariance matrix values between the rapidity bins for the muons data sample.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% {\lambda}int thick stationary aluminium target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei.
Ratio of deuterons to protons for polar angle 20-30 deg.
Ratio of deuterons to protons for polar angle 30-45 deg.
Ratio of deuterons to protons for polar angle 45-65 deg.