Single pi0 photoproduction has been studied with the CB-ELSA experiment at Bonn using tagged photon energies between 0.3 and 3.0 GeV. The experimental setup covers a very large solid angle of about 98% of 4 pi. Differential cross sections (d sigma)/(d Omega) have been measured. Complicated structures in the angular distributions indicate a variety of different resonances being produced in the s channel intermediate state gamma p --> N* (Delta*) --> p pi0. A combined analysis including the data presented in this letter along with other data sets reveals contributions from known resonances and evidence for a new resonance N(2070)D15.
Total cross section for GAMMA P --> P PI0 obtained by integration of the angular distributions and extrapolation into the forward and backward regions using the PWA result.
Differential cross section as a function of c.m. angle for the photon energy range 425 to 550 GeV.
Differential cross section as a function of c.m. angle for the photon energy range 550 to 675 GeV.
The cross section for exclusive π+ electroproduction on the proton has been measured near threshold for the first time at two different values of the virtual photon polarization (ɛ∼0.2 and ɛ∼0.7). Using the low energy theorem for this reaction we deduce the axial and pseudoscalar weak form factors GA and GP at ‖t‖=0.073, 0.139, and 0.179 (GeV/c)2. The slope of GA agrees with the value obtained in neutrino experiments. GP satisfies the pion pole dominance hypothesis, which is thus verified for the first time in this range of transfer.
No description provided.
No description provided.
No description provided.
The process γγ→π+π−π+π− has been investigated in reactions of the typee+e−→e+e−π+π−π+π− in the single tag mode. The range of the four momentum squared of one of the virtual photons was 0.28 GeV2/c2≦Q2≦3.6 GeV2/c2, the average being 〈Q2〉=0.92 GeV2/c2; the other photon was quasi real. The reaction is mainly described by the channels γγ→ρ0ρ0 and γγ→4π (phase space), occuring with about equal probability. TheQ2-dependence of the cross section is in agreement with the ρ form factor.
Data read from graph.. Additional overall systematic error 25%.
Some cross-sections for the photo-production of ~z~ from hydrogen for pion c.m. angles in the range 60~ ~ are presented. The data have been obtained by measuring proton yields from a hydrogen target, thus permitting separation of single-pion production from the strong background caused by double-pion production. The values, which extend from 360 to 938 MeV, show reasonable agreement with the results of a recent phase-shift analysis
No description provided.
The results of a comprehensive series of measurements of the cross-sections for the photo-production of π0-mesons from hydrogen at pion c.m. angles from 47 to 145 degrees are presented. The minimum and maximum photon energies have been 238 and 922 MeV respectively.
No description provided.
The production of charged kaon pairs in two-photon interactions has been studied with the ARGUS detector and the topological cross section has been measured. The γγ-widths and interference parameters have been determined for the tensor mesonsf2 (1270),a2 (1318) andf′2 (1525). The helicity structure assumed for the continuum contribution has a significant effect on the result. Upper limits have been obtained for the γγ-widths of the glueball candidate statesf2 (1720) andX (2230).
Data read from graph.. Errors are the square roots of the number of events.
Cross section allowing for spin components JM = 22,20,00. Data read from graph.. Additional overall systematic error 8.4%.
Cross section allowing for spin components JM = 22,00. Data read from graph.. Additional overall systematic error 8.4%.
The reactione+e−→e+e− A2 (1320) has been observed by detecting the decayA2→π+,π-π0. The two-photon width of theA2 has been measured to be Г(A2→γγ)=(0.09±0.27 (stat)±0.16 (syst)) keV. The cross section σ(γγ→π+,π-π0 has been determined outside theA2 resonance region.
Data read off a graph.
The reactione+p →> e+π++n at c.m. energyW=1125MeV and momentum transfer Q2=0.117GeV2/c2 has been measured. The transverse and longitudinal structure functions have been separated by varying the polarization of the virtual photon (Rosenbluth plot) with a 3 to 4% error. In addition the longitudinal-transverse interference term has been determined measuring the right-left asymmetry with an accuracy of 3%. The experimental data are compared to model calculations, and the sensitivity of the results to the axial and pion formfactors is discussed.
Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).
Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).
The production of thef0 in two photon collisions, with the subsequent decayf0→π+π− has been observed in the CELLO detector at PETRA. Thef0 peak was found to lie on a dipion continuum and to be shifted downwards in mass by ≃50 MeV/c2. The ππ mass spectrum from 0.8 to 1.5 GeV/c2 was well fitted by the model of Mennessier using only a unitarised Born amplitude and helicity 2f0 amplitude. The previously observed mass shift and distortion of thef0 peak are explained by strong interference between the Born andf0 amplitudes. The only free parameter in the fit of the data to the model is the radiative widthΓγγ(f0). It was found that:Γγγ(f0)=2.5±0.1±0.5 keV where the first (second) quoted errors are statistical (systematic).
Data read from graph.
Data read from graph.
An analysis of the production ofKS0KS0 andK±Ks0π∓ by two quasi-real photons is presented. The cross section forγγ→K0\(\overline {K^0 } \), which is given for the γγ invariant mass range fromK\(\bar K\) threshold to 2.5 GeV, is dominated by thef′(1525) resonance and an enhancement near theK\(\bar K\) threshold. Upper limits on the product of the two-photon width times the branching ratio intoK\(\bar K\) pairs are given forΘ(1700),h(2030), and ξ(2220). For exclusive two-photon production ofK±Ks0π∓ no significant signal was observed. Upper limits are given on the cross section ofγγ→K+\(\overline {K^0 } \)π− orK−K0π+ between 1.4 and 3.2 GeV and on the product of the γγ width times the branching ratio into theK\(\bar K\)π final states for theηc(2980) and the ι(1440), yieldingΓ(γγ)→i(1440))·BR(i(1440)→K\(\bar K\)π<2.2 keV at 95% C.L.
Data read from graph.. Corrected for the angular distribution, which is assumed to be sin(theta)**4 for W > 1.14 GeV and isotropic in the first bin.