Probing Strangeness Canonical Ensemble with $K^{-}$, $\phi(1020)$ and $\Xi^{-}$ Production in Au+Au Collisions at ${\sqrt{s_{NN}} = {3\,GeV}}$

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 831 (2022) 137152, 2022.
Inspire Record 1897327 DOI 10.17182/hepdata.110657

We report the first multi-differential measurements of strange hadrons of $K^{-}$, $\phi$ and $\Xi^{-}$ yields as well as the ratios of $\phi/K^-$ and $\phi/\Xi^-$ in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{3\,GeV}}$ with the STAR experiment fixed target configuration at RHIC. The $\phi$ mesons and $\Xi^{-}$ hyperons are measured through hadronic decay channels, $\phi\rightarrow K^+K^-$ and $\Xi^-\rightarrow \Lambda\pi^-$. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The $4\pi$ yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the $\phi/K^-$ and $\phi/\Xi^-$ ratios while the result of canonical ensemble (CE) calculations reproduce $\phi/K^-$, with the correlation length $r_c \sim 2.7$ fm, and $\phi/\Xi^-$, $r_c \sim 4.2$ fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at $\rm{3\,GeV}$ implies a rather different medium property at high baryon density.

12 data tables

$K^-$ (a), invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\phi$ meson (b) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\Xi^-$ (c) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

More…

K0(S) PRODUCTION IN ANTI-P P INTERACTIONS AT S**(1/2) = 630-GeV AND 1800-GEV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.D 40 (1989) 3791-3794, 1989.
Inspire Record 287811 DOI 10.17182/hepdata.22999

Measurements of inclusive transverse-momentum spectra for KS0 mesons produced in proton-antiproton collisions at s of 630 and 1800 GeV are presented and compared with data taken at lower energies. The ratio, as a function of pT, of the cross section for KS0 to that for charged hadrons is very similar to what is observed at lower energies. At 1800 GeV, we calculate the strangeness-suppression factor λ=0.40±0.05.

4 data tables

Estimated effective cross sections for events which pass the trigger and selection criteria. The uncertainties in these represent the principal source of error in the overall normalisation of the results.

Statistical errors only.

Statistical errors only.

More…

INCLUSIVE CHARGED CURRENT ANTI-NEUTRINO - NUCLEON INTERACTIONS AT HIGH-ENERGIES

The Fermilab-Serpukhov-Moscow-Michigan collaboration Ammosov, V.V. ; Denisov, A.G. ; Gapienko, G.S. ; et al.
Nucl.Phys.B 199 (1982) 399-423, 1982.
Inspire Record 167339 DOI 10.17182/hepdata.41220

We present results on the experimental study of inelastic charged-current antineutrino-nucleon scattering in the energy range of 10–200 GeV. The data sample, consisting of about 6500 antineutrino-induced events, was obtained in the Fermilab 15 ft bubble chamber filled with a heavy neon-hydrogen mixture. The differential cross sections for ν μ N interactions are presented in terms of scaling variables x and y . The structure functions F 2 ν and xF 3 ν have been evaluated as functions of x and E ν . A deviation from the scaling hypothesis, similar to those found in other experiments on inelastic lepton-nucleon scattering, has been observed. The data are interpreted in the framework of the quark-parton model. Quark and antiquark distributions and their energy dependences are presented.

21 data tables

No description provided.

No description provided.

No description provided.

More…