The traditional quark model accounts for the existence of baryons, such as protons and neutrons, which consist of three quarks, as well as mesons, composed of a quark-antiquark pair. Only recently has substantial evidence started to accumulate for exotic states composed of four or five quarks and antiquarks. The exact nature of their internal structure remains uncertain. This paper reports the first measurement of quantum numbers of the recently discovered family of three all-charm tetraquarks, using data collected by the CMS experiment at the Large Hadron Collider from 2016 to 2018. The angular analysis techniques developed for the discovery and characterization of the Higgs boson have been applied to the new exotic states. Here we show that the quantum numbers for parity $P$ and charge conjugation $C$ symmetries are found to be +1. The spin $J$ of these exotic states is consistent with 2$\hbar$, while 0$\hbar$ and 1$\hbar$ are excluded at 95% and 99% confidence level, respectively. The $J^{PC} = 2^{++}$ assignment implies particular configurations of constituent spins and orbital angular momenta, which constrain the possible internal structure of these tetraquarks.
Measurements of Higgs boson production, where the Higgs boson decays into a pair of $\tau$ leptons, are presented, using a sample of proton-proton collisions collected with the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Three analyses are presented. Two are targeting Higgs boson production via gluon fusion and vector boson fusion: a neural network based analysis and an analysis based on an event categorization optimized on the ratio of signal over background events. These are complemented by an analysis targeting vector boson associated Higgs boson production. Results are presented in the form of signal strengths relative to the standard model predictions and products of cross sections and branching fraction to $\tau$ leptons, in up to 16 different kinematic regions. For the simultaneous measurements of the neural network based analysis and the analysis targeting vector boson associated Higgs boson production signal strengths are found to be 0.82 $\pm$ 0.11 for inclusive Higgs boson production, 0.67 $\pm$ 0.19 (0.81 $\pm$ 0.17) for the production mainly via gluon fusion (vector boson fusion), and 1.79 $\pm$ 0.45 for vector boson associated Higgs boson production.
Multiparticle azimuthal correlations of prompt D$^0$ mesons are measured in PbPb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. For the first time, a four-particle cumulant method is used to extract the second Fourier coefficient of the azimuthal distribution ($v_2$) of D$^0$ mesons as a function of event centrality and the D$^0$ transverse momentum. The ratios of the four-particle $v_2$ values to previously measured two-particle cumulant results provide direct experimental access to event-by-event fluctuations of charm quark azimuthal anisotropies. These ratios are also found to be comparable to those of inclusive charged particles in the event. However, hints of deviations are seen in the most central and peripheral collisions. To investigate the origin of flow fluctuations in the charm sector, these measurements are compared with models implementing fluctuations of charm quark energy loss via collisional or radiative processes in the quark-gluon plasma. These models cannot quantitatively describe the data over the full transverse momentum and centrality ranges, although the calculations with collisional energy loss provide a better description of the data.
A search for new heavy resonances decaying to a pair of Higgs bosons (HH) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. Data were collected with the CMS detector at the LHC in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Resonances with a mass between 0.8 and 4.5 TeV are considered using events in which one Higgs boson decays into a bottom quark pair and the other into final states with either one or two charged leptons. Specifically, the single-lepton decay channel HH $\to$ $\mathrm{b\bar{b}}$WW$^*$ $\to$ $\mathrm{b\bar{b}}\ell\nu q\bar{q}'$ and the dilepton decay channels HH $\to$ $\mathrm{b\bar{b}}$WW$^*$ $\to$ $\mathrm{b\bar{b}}\ell\nu \ell\nu$ and HH $\to$ $\mathrm{b\bar{b}}\tau\tau$ $\to$ $\mathrm{b\bar{b}}\ell\nu\nu \ell\nu\nu$ are examined, where $\ell$ in the final state corresponds to an electron or muon. The signal is extracted using a two-dimensional maximum likelihood fit of the H $\to$ $\mathrm{b\bar{b}}$ jet mass and HH invariant mass distributions. No significant excess above the standard model expectation is observed in data. Model-independent exclusion limits are placed on the product of the cross section and branching fraction for narrow spin-0 and spin-2 massive bosons decaying to HH. The results are also interpreted in the context of radion and bulk graviton production in models with a warped extra spatial dimension. The results provide the most stringent limits to date for X $\to$ HH signatures with final-state leptons and at some masses provide the most sensitive limits of all X $\to$ HH searches.
A search for long-lived particles (LLPs) produced in association with a Z boson is presented. The study is performed using data from proton-proton collisions with a center-of-mass energy of 13 TeV recorded by the CMS experiment during 2016-2018, corresponding to an integrated luminosity of 117 fb$^{-1}$. The LLPs are assumed to decay to a pair of standard model quarks that are identified as displaced jets within the CMS tracker system. Triggers and selections based on Z boson decays to electron or muon pairs improve the sensitivity to light LLPs (down to 15 GeV). This search provides sensitivity to beyond the standard model scenarios which predict LLPs produced in association with a Z boson. In particular, the results are interpreted in the context of exotic decays of the Higgs boson to a pair of scalar LLPs (H $\to$ SS). The Higgs boson decay branching fraction is constrained to values less than 6% for proper decay lengths of 10-100 mm and for LLP masses between 40 and 55 GeV. In the case of low-mass ($\approx$ 15 GeV) scalar particles that subsequently decay to a pair of b quarks, the search is sensitive to branching fractions $\mathcal{B}$(H $\to$ SS) $\lt$ 20% for proper decay lengths of 10-50 mm. The use of associated production with a Z boson increases the sensitivity to low-mass LLPs of this analysis with respect to gluon fusion searches. In the case of 15 GeV scalar LLPs, the improvement corresponds to a factor of 2 at a proper decay length of 30 mm.
The measurement of the cross section for the production of a Z boson, decaying to dielectrons or dimuons, in association with at least one bottom quark jet are performed with proton-proton collision data at $\sqrt{s} =$ 13 TeV. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$, collected by the CMS experiment at the LHC during 2016-2018. The integrated cross sections for Z + $\ge$ 1 b jet and Z + $\ge$ 2 b jets are reported for the electron, muon, and combined channels. The fiducial cross sections in the combined channel are 6.52 $\pm$ 0.04 (stat) $\pm$ 0.40 (syst) $\pm$ 0.14 (theo) pb for Z + $\ge$ 1 b jet and 0.65 $\pm$ 0.03 (stat) $\pm$ 0.07 (syst) $\pm$ 0.02 (theo) pb for Z + $\ge$ 2 b jets. The differential cross section distributions are measured as functions of various kinematic observables that are useful for precision tests of perturbative quantum chromodynamics predictions. The ratios of integrated and differential cross sections for Z + $\ge$ 2 b jets and Z + $\ge$ 1 b jet processes are also determined. The value of the integrated cross section ratio measured in the combined channel is 0.100 $\pm$ 0.005 (stat) $\pm$ 0.007 (syst) $\pm$ 0.003 (theo). All measurements are compared with predictions from various event generators.
A search for invisible decays of the Higgs boson produced via vector boson fusion (VBF) has been performed with 101 fb$^{-1}$ of proton-proton collisions delivered by the LHC at $\sqrt{s} =$ 13 TeV and collected by the CMS detector in 2017 and 2018. The sensitivity to the VBF production mechanism is enhanced by constructing two analysis categories, one based on missing transverse momentum, and a second based on the properties of jets. In addition to control regions with Z and W boson candidate events, a highly populated control region, based on the production of a photon in association with jets, is used to constrain the dominant irreducible background from the invisible decay of a Z boson produced in association with jets. The results of this search are combined with all previous measurements in the VBF topology, based on data collected in 2012 (at $\sqrt{s} =$ 8 TeV), 2015, and 2016, corresponding to integrated luminosities of 19.7, 2.3, and 36.3 fb$^{-1}$, respectively. The observed (expected) upper limit on the invisible branching fraction of the Higgs boson is found to be 0.18 (0.10) at the 95% confidence level, assuming the standard model production cross section. The results are also interpreted in the context of Higgs-portal models.
A search is presented for a heavy W' boson resonance decaying to a B or T vector-like quark and a t or a b quark, respectively. The analysis is performed using proton-proton collisions collected with the CMS detector at the LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV. Both decay channels result in a signature with a t quark, a Higgs or Z boson, and a b quark, each produced with a significant Lorentz boost. The all-hadronic decays of the Higgs or Z boson and of the t quark are selected using jet substructure techniques to reduce standard model backgrounds, resulting in a distinct three-jet W' boson decay signature. No significant deviation in data with respect to the standard model background prediction is observed. Upper limits are set at 95% confidence level on the product of the W' boson cross section and the final state branching fraction. A W' boson with a mass below 3.1 TeV is excluded, given the benchmark model assumption of democratic branching fractions. In addition, limits are set based on generalizations of these assumptions. These are the most sensitive limits to date for this final state.
The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions in the decay channel with two oppositely charged leptons (e$^\pm\mu^\mp$, e$^+$e$^-$, or $\mu^+\mu^-$). The measurement is performed using 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at $\sqrt{s} =$ 13 TeV during the 2016-2018 data-taking period of the CERN LHC. A fiducial phase space is defined such that photons radiated by initial-state particles, top quarks, or any of their decay products are included. An inclusive cross section of 175.2 $\pm$ 2.5 (stat) $\pm$ 6.3 (syst) fb is measured in a signal region with at least one jet coming from the hadronization of a bottom quark and exactly one photon with transverse momentum above 20 GeV. Differential cross sections are measured as functions of several kinematic observables of the photon, leptons, and jets, and compared to standard model predictions. The measurements are also interpreted in the standard model effective field theory framework, and limits are found on the relevant Wilson coefficients from these results alone and in combination with a previous CMS measurement of the $\mathrm{t\bar{t}}\gamma$ production process using the lepton+jets final state.
A search for exclusive two-photon production via photon exchange in proton-proton collisions, pp $\to$ p$\gamma\gamma$p with intact protons, is presented. The data correspond to an integrated luminosity of 9.4 fb$^{-1}$ collected in 2016 using the CMS and TOTEM detectors at a center-of-mass energy of 13 TeV at the LHC. Events are selected with a diphoton invariant mass above 350 GeV and with both protons intact in the final state, to reduce backgrounds from strong interactions. The events of interest are those where the invariant mass and rapidity calculated from the momentum losses of the forward-moving protons matches the mass and rapidity of the central, two-photon system. No events are found that satisfy this condition. Interpreting this result in an effective dimension-8 extension of the standard model, the first limits are set on the two anomalous four-photon coupling parameters. If the other parameter is constrained to its standard model value, the limits at 95% CL are $\lvert\zeta_1\rvert$ $\lt$ 2.9 $\times$ 10$^{-13}$ GeV$^{-4}$ and $\lvert\zeta_2\rvert$ $\lt$ 6.0 $\times$ 10$^{-13}$ GeV$^{-4}$.