Multiparticle azimuthal correlations of prompt D$^0$ mesons are measured in PbPb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. For the first time, a four-particle cumulant method is used to extract the second Fourier coefficient of the azimuthal distribution ($v_2$) of D$^0$ mesons as a function of event centrality and the D$^0$ transverse momentum. The ratios of the four-particle $v_2$ values to previously measured two-particle cumulant results provide direct experimental access to event-by-event fluctuations of charm quark azimuthal anisotropies. These ratios are also found to be comparable to those of inclusive charged particles in the event. However, hints of deviations are seen in the most central and peripheral collisions. To investigate the origin of flow fluctuations in the charm sector, these measurements are compared with models implementing fluctuations of charm quark energy loss via collisional or radiative processes in the quark-gluon plasma. These models cannot quantitatively describe the data over the full transverse momentum and centrality ranges, although the calculations with collisional energy loss provide a better description of the data.
The measurement of hard scatterings in proton-nucleus collisions has resulted in a greater understanding of both the proton and nuclear structure. ATLAS measured the centrality dependence of the dijet yield using 165 nb$^{-1}$ of $p$+Pb data collected at $\sqrt{s_{_\text{NN}}}$ = 8.16 TeV in 2016. The event centrality, which reflects the $p$+Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter. The central-to-peripheral ratio of the scaled dijet yields, $R_\mathrm{CP}$, is evaluated, and the results are presented as a function of variables that reflect the kinematics of the initial hard parton scattering process. The $R_\mathrm{CP}$ shows a scaling with the Bjorken-$x$ of the parton originating from the proton, $x_p$, while no such trend is observed as a function of $x_\mathrm{Pb}$. This analysis provides unique input to understanding the role of small proton spatial configurations in $p$+Pb collisions by covering parton momentum fractions from the valence region down to $x_p \sim 10^{-3}$ and $x_\mathrm{Pb}\sim 4\cdot10^{-4}$.
The Lund jet plane (LJP) is measured for the first time in $t\overline{t}$ events, using 140 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV pp collision data collected with the ATLAS detector at the LHC. The LJP is a two-dimensional observable of the sub-structure of hadronic jets that acts as a proxy for the kinematics of parton showers and hadron formation. The observable is constructed from charged particles and is measured for R = 1.0 anti-$k_t$ jets with transverse momentum above 350 GeV containing the full decay products of either a top quark or a daughter $W$ boson. The other top quark in the event is identified from its decay into a b-quark, an electron or a muon and a neutrino. The measurement is corrected for detector effects and compared with a range of Monte Carlo predictions sensitive to different aspects of the hadronic decays of the heavy particles. In the $W$-boson-initiated jets, all the predictions are incompatible with the measurement. In the top quark initiated jets, disagreement with all predictions is observed in smaller subregions of the plane, and with a subset of the predictions across the fiducial plane. The measurement could be used to improve the tuning of Monte Carlo generators, for better modelling of hadronic decays of heavy quarks and bosons, or to improve the performance of jet taggers.
This paper presents a search for a new $Z^\prime$ resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at $\sqrt{s}=13$ TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95 % confidence-level upper limits on the production cross-section times branching ratio of the $Z^\prime$ to dark quarks as a function of the $Z^\prime$ mass for various dark-quark scenarios.
A search for nonresonant Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is presented. The analysis uses 126 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}={13}$ TeV collected with the ATLAS detector at the Large Hadron Collider, and targets both the gluon-gluon fusion and vector-boson fusion production modes. No evidence of the signal is found and the observed (expected) upper limit on the cross-section for nonresonant Higgs boson pair production is determined to be 5.4 (8.1) times the Standard Model predicted cross-section at 95% confidence level. Constraints are placed on modifiers to the $HHH$ and $HHVV$ couplings. The observed (expected) $2\sigma$ constraints on the $HHH$ coupling modifier, $\kappa_\lambda$, are determined to be $[-3.5, 11.3]$ ($[-5.4, 11.4]$), while the corresponding constraints for the $HHVV$ coupling modifier, $\kappa_{2V}$, are $[-0.0, 2.1]$ ($[-0.1, 2.1]$). In addition, constraints on relevant coefficients are derived in the context of the Standard Model effective field theory and Higgs effective field theory, and upper limits on the $HH$ production cross-section are placed in seven Higgs effective field theory benchmark scenarios.
High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the event-wise average transverse momentum ($P([p_{\mathrm{T}}])$). Distinguishing between contributions from fluctuations in the size of the nuclear overlap area (geometrical component) and other sources at fixed size (intrinsic component) presents a challenge. Here, these two components are distinguished by measuring the mean, variance, and skewness of $P([p_{\mathrm{T}}])$ in $^{208}$Pb+$^{208}$Pb and $^{129}$Xe+$^{129}$Xe collisions at $\sqrt{s_{{\mathrm{NN}}}} = 5.02$ and 5.44 TeV, respectively, using the ATLAS detector at the LHC. All observables show distinct changes in behavior in ultra-central collisions, where the geometrical variations are suppressed as the overlap area reaches its maximum. These results demonstrate a new technique to disentangle geometrical and intrinsic fluctuations, enabling constraints on initial condition and properties of the quark-gluon plasma, such as the speed of sound.
Measurements of $W^+W^-\rightarrow e^\pm νμ^\mp ν$ production cross-sections are presented, providing a test of the predictions of perturbative quantum chromodynamics and the electroweak theory. The measurements are based on data from $pp$ collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015-2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. The number of events due to top-quark pair production, the largest background, is reduced by rejecting events containing jets with $b$-hadron decays. An improved methodology for estimating the remaining top-quark background enables a precise measurement of $W^+W^-$ cross-sections with no additional requirements on jets. The fiducial $W^+W^-$ cross-section is determined in a maximum-likelihood fit with an uncertainty of 3.1%. The measurement is extrapolated to the full phase space, resulting in a total $W^+W^-$ cross-section of $127\pm4$ pb. Differential cross-sections are measured as a function of twelve observables that comprehensively describe the kinematics of $W^+W^-$ events. The measurements are compared with state-of-the-art theory calculations and excellent agreement with predictions is observed. A charge asymmetry in the lepton rapidity is observed as a function of the dilepton invariant mass, in agreement with the Standard Model expectation. A CP-odd observable is measured to be consistent with no CP violation. Limits on Standard Model effective field theory Wilson coefficients in the Warsaw basis are obtained from the differential cross-sections.
A search for the resonant production of a heavy scalar $X$ decaying into a Higgs boson and a new lighter scalar $S$, through the process $X \to S(\to bb) H(\to \gamma\gamma)$, where the two photons are consistent with the Higgs boson decay, is performed. The search is conducted using an integrated luminosity of 140 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed over the mass range 170 $\leq$$m_{X}$$\leq$ 1000 GeV and 15 $\leq$$m_{S}$$\leq$ 500 GeV. Parameterised neural networks are used to enhance the signal purity and to achieve continuous sensitivity in a domain of the ($m_{X}$, $m_{S}$) plane. No significant excess above the expected background is found and 95% CL upper limits are set on the cross section times branching ratio, ranging from 39 fb to 0.09 fb. The largest deviation from the background-only expectation occurs for ($m_{X}$, $m_{S}$) = (575, 200) GeV with a local (global) significance of 3.5 (2.0) standard deviations.
A measurement of the inclusive cross section of top quark pair production in association with a Z boson using proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC is performed. The data sample corresponds to an integrated luminosity of 77.5 fb$^{-1}$, collected by the CMS experiment during 2016 and 2017. The measurement is performed using final states containing three or four charged leptons (electrons or muons), and the Z boson is detected through its decay to an oppositely charged lepton pair. The production cross section is measured to be $\sigma(\mathrm{t\bar{t}Z})$ $=$ 0.95 $\pm$ 0.05 (stat) $\pm$ 0.06 (syst) pb. For the first time, differential cross sections are measured as functions of the transverse momentum of the Z boson and the angular distribution of the negatively charged lepton from the Z boson decay. The most stringent direct limits to date on the anomalous couplings of the top quark to the Z boson are presented, including constraints on the Wilson coefficients in the framework of the standard model effective field theory.
A measurement of the top-quark pole mass $m_{t}^\text{pole}$ is presented in $t\bar{t}$ events with an additional jet, $t\bar{t}+1\text{-jet}$, produced in $pp$ collisions at $\sqrt{s}=13$ TeV. The data sample, recorded with the ATLAS experiment during Run 2 of the LHC, corresponds to an integrated luminosity of $140~\text{fb}^{-1}$. Events with one electron and one muon of opposite electric charge in the final state are selected to measure the $t\bar{t}+1\text{-jet}$ differential cross-section as a function of the inverse of the invariant mass of the $t\bar{t}+1\text{-jet}$ system. Iterative Bayesian Unfolding is used to correct the data to enable comparison with fixed-order calculations at next-to-leading-order accuracy in the strong coupling. The process $pp \to t\bar{t}j$ ($2 \rightarrow 3$), where top quarks are taken as stable particles, and the process $pp \to b\bar{b}l^+νl^- \barν j$ ($2 \to 7$), which includes top-quark decays to the dilepton final state and off-shell effects, are considered. The top-quark mass is extracted using a $χ^2$ fit of the unfolded normalized differential cross-section distribution. The results obtained with the $2 \to 3$ and $2 \to 7$ calculations are compatible within theoretical uncertainties, providing an important consistency check. The more precise determination is obtained for the $2 \to 3 $ measurement: $m_{t}^\text{pole}=170.7\pm0.3~(\text{stat.})\pm1.4~(\text{syst.})~\pm 0.3~(\text{scale})~\pm 0.2~(\text{PDF}\oplusα_\text{S})~\text{GeV},$ which is in good agreement with other top-quark mass results.