We have measured the mean charged multiplicity n¯CH as a function of transverse momentum p⊥ of the forward proton in the reaction p+p→p+MM for five intervals of missing mass (MM) using our Multiparticle Argo Spectrometer System. We observe an increase of n¯CH for p⊥>1 GeV/c.
No description provided.
Multihadronic production has been observed at the Adone e + e − storage ring, in the c.m. energy range 1.4 - 2.4 GeV. The cross sections for the reactions e + + e − → 2 π ± + nπ o (1 ⩽ n ⩽ 4) and e + + e − → (4 π ± + nπ ± ) (0 ⩽ n ⩽ 2) have been measured, assuming that the produced particles are only pions with a pure phase space momentum distribution.
No description provided.
We present results of measurements of the differential cross sections for the following elastic-scattering reactions: (i) π + p at 5.2 and 7.0 GeV/ c in the range −1 < u < 0.02 (GeV/ c ) 2 , (ii) π − p at 7.0 GeV/ c in the range −0.7 < u < 0.05 (GeV/ c ) 2 , (iii) K + p at 5.2 and 7.0 GeV/ c in the ranges −1 < t < −0.01 (GeV/ c ) 2 and −1 < u < 0 (GeV/ c ) 2 , and K − p at 7.0 GeV/ c in the range −1 < u < 0 (GeV/ c ) 2 .
No description provided.
No description provided.
SIDE GEOMETRY.
The asymmetry Σ(k,θ*)=(dσ⊥−dσ∥)(dσ⊥+σ∥) of the polarized cross sections for π0 photoproduction has been measured at θ*=90° for energies k of the incident photon in the range 230-380 MeV. The experiment has been performed with the polarized γ-ray beam of the Frascati 1-GeV electron synchrotron. The experimental results are compared with the present theoretical predictions in order to investigate the importance of ω exchange in the t channel and the contribution of the E1+(3) multipole at the 33 resonance. The theory with ω exchange is in the best agreement with the experiment.
No description provided.
The differential cross section for π + p elastic scattering at 895, 945, 995 and 1040 MeV/ c has been measured in a hydrogen bubble chamber. The results are in good agreement with previous measurements using counter techniques except at extreme backward angles where significantly lower cross sections are obtained.
No description provided.
No description provided.
No description provided.
For the reaction γ+p→γ′+p′ (proton Compton effect), we have measured the ratio dσIIdσ⊥ between the cross sections for linearly polarized photons, using the coherent bremsstrahlung beam of the Frascati electron synchrotron. At 90° in the c.m. system and in the photon energy region 300≤K≤335 MeV, we find dσIIdσ⊥=2.1−0.4+0.5. In the absence of theoretical predictions based on the dispersive theory in this energy region, this result is compared with the values obtained using an isobaric model, taking into account various possible intermediate states.
Axis error includes +- 0.0/0.0 contribution (?////).
None
No description provided.
No description provided.
No description provided.
The angular distributions of K + p and π + p backward elastic scattering have been measured at 5.2 and 6.9 GeV/ c . Backward π - p and K - p elastic scattering were studied at 6.9 GeV/ c . Backward peaks are observed in K + p scattering with an energy dependence of the form s −4 .
No description provided.
The reactions π−p→π−p and π−p→π−π0p for 1.7 GeV/c incident π− have been studied, in 3094 and 2244 interactions respectively, identified from 10 106 two-prong events measured in film exposed at the BNL 20 in. hydrogen bubble chamber. The differential elastic-scattering cross-section is found to show a first and second diffraction peak and a first diffraction minimum with indications of a second minimum and onset of a third maximum. The experimental curve has been fitted by a black-dise optical-model formula with radius (0.80±0.03) fm and by a differential cross-section computed from the Dirac equation depending on two ranges, 0.7 fm attractive imaginary and 0.4 fm repulsive. The dominant mode (∼40%) of the π−π0p production is through the two-body channel, π−p→ϱ−p. We find the following cross-sections: σ(π−p→π−p mb, σ(π−p→π−p mb. The differential rhomeson production cross-section shows a diffraction peak having a dependence (dσ/dt)(π−p→ϱ−p)=[(2.5±0.2) exp [(−5.3±0.5)t]] mb/(GeV/c)2, wheret is the squared four0momentum transfer between incoming and outgoing proton in (GeV/c)2, and a second diffraction maximum. It has been fitted by an optical-model formula for a bright ring of radius 0.80 fm and ring thickness 0.25 fm. The cross-section for σ(π−p→π−p was found to be (0.36±0.04) mb. From the inelastic data the Chew-Low dipion scattering cross-section has been computed, using various form factors. A form factor of unity is found to be acceptable.
No description provided.