Measurements have been made of ΔσT for polarized neutrons incident on a polarized-proton target from 3.65 to 11.60 MeV. In the energy range near 10 MeV, ΔσT is very sensitive to the nucleon-nucleon tensor interaction. Comparison of the data to potential-model predictions indicate that the tensor interaction is weak, resulting in values of the 3S1−3D1 mixing parameter ε1 which are smaller than predicted by any nucleon-nucleon potential model. A smaller tensor force will bring the predictions of local potential models for the triton binding energy into closer agreement with the experimental value.
The measured cross section is the total cross section with the spins antiparallel minus the total cross section with the spins parallel.
We investigate the four-photon final state produced in γγ colissions. In the π 0 π 0 channel we observe f(1270) production with predominantly helicity 2 and measure a partial width Γ γγ 2.9 +0.6 −0.4 ± keV (independent of assumptions on the helicity). We observe A 2 (1310) production in the π 0 η channel and find a partial width Γ γγ = 0.77 ± 0.18 ± 0.27 KeV (assuming helicity 2). We give an upper limit for f ≈ ηη .
Data read from graph. Systematic error on M is of order of 2% or less.
Data read from graph.
No description provided.
Recoil protons from the process γ+p→p+π0 have been detected by nuclear emulsions placed within a hydrogen-gas target and used to measure the differential cross section for production of neutral pions. In this manner protons of energies as low as 5 Mev can be detected at laboratory angles corresponding to emission of a pion at center-of-momentum (c.m.) angles as low as 26°. This experiment thus supplements that of Oakley and Walker which is in the same range of photon energies (240-480 Mev), but is restricted to pion c.m. angles greater than about 70° owing to higher minimum detectable proton energy. Common experimental points provide intercomparison of absolute values. Angular distributions are analyzed in the form dσdΩ=A+Bcosθ+Ccos2θ in the c.m. system. The combined Oakley-Walker and present data give the average value of the ratio AC as -1.60±0.10 in the energy range from 260 to 450 Mev. The coefficient B, which gives the front-back asymmetry, passes through zero below the resonance energy of 320 Mev and is positive at higher energies. These results are consistent with magnetic dipole absorption leading to a state of the pion-nucleon system of angular momentum 32, together with a finite amount of S-wave interference.
Axis error includes +- 7.3/7.3 contribution.