Exclusive production of $\rho^0$ and $J/\psi$ mesons in e^+ p collisions has been studied with the ZEUS detector in the kinematic range $0.25 < Q^2 < 50 GeV^2, 20 < W < 167 GeV$ for the $\rho^0$ data and $2 < Q^2 < 40 GeV^2, 50 < W < 150 GeV$ for the $J/\psi$ data. Cross sections for exclusive $\rho^0$ and $J/\psi$ production have been measured as a function of $Q^2, W$ and $t$. The spin-density matrix elements $r^{04}_{00}, r^1_{1-1}$ and $Re r^{5}_{10}$ have been determined for exclusive $\rho^0$ production as well as $r^{04}_{00}$ and $r^{04}_{1-1}$ for exclusive $J/\psi$ production. The results are discussed in the context of theoretical models invoking soft and hard phenomena.
Exclusive RHO0 electro- and photo- production and cross sections as a function of Q**2 from the BPC data set.
Exclusive RHO0 electro- and photo- production cross section as a function of W from the BPC data set.
Exclusive RHO0 electro- and photo- production cross sections as a function of W from the DIS data set.
The inclusive forward jet cross section in deep inelastic $e^+p$ scattering has been measured in the region of $x$--Bjorken, ~$4.5 \cdot 10^{-4}$~ to ~$4.5 \cdot 10^{-2}$. This measurement is motivated by the search for effects of BFKL--like parton shower evolution. The cross section at hadron level as a function of \xbj is compared to cross sections predicted by various Monte Carlo models. An excess of forward jet production at small \xbj is observed, which is not reproduced by models based on DGLAP parton shower evolution. The Colour Dipole model describes the data reasonably well. Predictions of perturbative QCD calculations at the parton level based on BFKL and DGLAP parton evolution are discussed in the context of this measurement.
The second systematic (DSYS) error is the correlated systematic error due to the scale uncertainty of the calorimeter.
The production and semi-leptonic decay of heavy quarks have been studied in the photoproduction process $e^+p -> e^+ + {dijet} + e^- + X with the ZEUS detector at HERA using an integrated luminosity of 38.5 ${\rm pb^{-1}}$. Events with photon-proton centre-of-mass energies, $W_{\gamma p}$, between 134 and 269 GeV and a photon virtuality, Q^2, less than 1 ${\rm GeV^2}$ were selected requiring at least two jets of transverse energy $E_T^{\rm jet1(2)} >7(6)$ GeV and an electron in the final state. The electrons were identified by employing the ionisation energy loss measurement. The contribution of beauty quarks was determined using the transverse momentum of the electron relative to the axis of the closest jet, $p_T^{\rm rel}$. The data, after background subtraction, were fit with a Monte Carlo simulation including beauty and charm decays. The measured beauty cross section was extrapolated to the parton level with the b quark restricted to the region of transverse momentum $p_T^{b} > p_T^{\rm min} =$ 5 GeV and pseudorapidity $|\eta^{b}| <$ 2. The extrapolated cross section is $1.6 \pm 0.4 (stat.)^{+0.3}_{-0.5} (syst.) ^{+0.2}_{-0.4} (ext.) {nb}$. The result is compared to a perturbative QCD calculation performed to next-to-leading order.
The differential distribution of PT(C=REL) for heavy quark decays. The second DSYS error is due to the energy scale uncertainty.
The differential distribution of X(C=GAMMA,OBS), the fraction of the photons momentum contributing to the production of the two highest transverse energy jets. The second DSYS error is due to the energy scale uncertainty.
Cross section for beauty production with a prompt electron in the restricted kinetic region.
Dijet cross sections in neutral current deep inelastic ep scattering have been measured in the range $10 < \Q2 < 10^4$ GeV$^2$ with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb$^{-1}$. The cross sections, measured in the Breit frame using the $\kt$ jet algorithm, are compared with next-to-leading-order perturbative QCD calculations using proton parton distribution functions. The uncertainties of the QCD calculations have been studied. The predictions are in reasonable agreement with the measured cross sections over the entire kinematic range.
Dijet cross section as a function of LOG10(Q**2).
Dijet cross section as a function of LOG10(MEAN(ET)**2/Q**2).
Dijet cross section as a function of LOG10(XI) for the ful Q**2 range.
Elastic and proton-dissociative rho0 photoproduction (gamma p-->rho0 p,gamma p -->rho0 N,with rho0-->pi+pi-) has been studied in ep interactions at HERA for gamma-p centre-of-mass energies in the range 50<W<100 GeV and for |t|<0.5 GeV2; the results on the p-dissociative reaction are presented for masses of the dissociated proton system in the range MN^2<0.1W^2.For the elastic process,the pi+pi- invariant mass spectrum has been investigated as a function of t. As in fixed target experiments, the rho0 resonance shape is asymmetric;this asymmetry decreases with increasing |t|.The cross section has been studied as a function of W; a fit to the resonant part with the form W^a gives a=0.16\pm0.06(stat.) +0.11-0.15(syst.). The resonant part of the gamma p-->pi+pi- p cross section is 11.2\pm 0.1(stat.)+1.1-1.2 (syst.) mub at <W>=71.7 GeV. The t dependence of the cross section can be described by a function of the type Ae^(-b|t|+ct^2) with b=10.9\pm0.3(stat.)+1.0-0.5(syst.)GeV-2 and c=2.7\pm0.9(stat.)+1.9-1.7(syst.) GeV-4. The t dependence has also been studied as a function of W and a value of the slope of the pomeron trajectory 0.23\pm0.15(stat.)+0.10-0.07(syst.)GeV-2 has been deduced. The rho spin density matrix elements r^04_00,r^04_1-1 and Re[r^04_10] have been measured and found to be consistent with expectations based on SCHC. For p-dissociative pi+pi- photoproduction in the rho0 mass range, the distributions of the two-pion invariant mass, W and the polar and azimuthal angles of the pions in the helicity frame are the same within errors as those for the elastic process. The t distribution has been fitted to an exponential function with a slope parameter 5.8\pm0.3(stat.)\pm0.5(syst.)GeV-2. The ratio of the elastic to p-dissociative rho0 photoproduction cross section is 2.0\pm0.2(stat.)\pm0.7(syst.).
Integrated elastic rho0 photoproduction cross section.
Integrated elastic pi+ pi- photoproduction cross section.
Acceptance corrected PHI angular distribution, where PHI is angle between the decay plane and the RHO0 production plane. Stastistical errors only.
We have searched for the production of a selectron and a squark in $e^+p$ collisions at a center-of-mass energy of 300 GeV using the ZEUS detector at HERA. The selectron and squark are sought in the direct decay into the lightest neutralino in the framework of supersymmetric extensions to the Standard Model which conserve R-parity. No evidence for the production of supersymmetric particles has been found in a data sample corresponding to 46.6~pb$^{-1}$ of integrated luminosity. We express upper limits on the product of the cross section times the decay branching ratios as excluded regions in the parameter space of the Minimal Supersymmetric Standard Model.
No description provided.
We present results from Experiment 864 for antiproton production and antideuteron limits in Au + Pb collisions at 11.5 GeV/c per nucleon. We have measured invariant multiplicities for antiprotons for rapidities 1.4<y<2.4 at low transverse momentum as a function of collision geometry. When compared with the results from Experiment 878 our measurements suggest a significant contribution to the measured antiproton yield from the decay of strange antibaryons. We have also searched for antideuterons and see no statistically significant signal. Thus, we set upper limits on the production at approximately 3 x 10^{-7} per 10% highest multiplicity Au + Pb interaction.
An experiment has been performed with the Fermilab 30-inch bubble chamber and Downstream Particle Identifier to study inclusive charged pion production in the high energy interactions of π±,K+,p and\(\bar p\) with thin foils of magnesium, silver and gold. The laboratory rapidity and transverse momentum distributions are presented separately for π+ and π− production. Comparisons are made with data from hadron-proton interactions and theA dependence of the cross sections in the different kinematic regions is discussed. We investigate the dependence of the cross sections on the number of observed protons ejected from the nucleus. By using our π−A data from two different beam energies, we study the energy dependence of these spectra. Comparisons are made with the VENUS string model Monte Carlo.
No description provided.
Exclusive electroproduction of rho^0 mesons has been measured using the ZEUS detector at HERA in two Q^2 ranges, 0.25<Q^2<0.85 GeV^2 and 3<Q^2<30 GeV^2. The low-Q^2 data span the range 20<W<90 GeV; the high-Q^2 data cover the 40<W<120 GeV interval. Both samples extend up to four-momentum transfers of |t|=0.6 GeV^2. The distribution in the azimuthal angle between the positron scattering plane and the rho^0 production plane shows a small but significant violation of s-channel helicity conservation, corresponding to the production of longitudinally polarised (i.e. helicity zero) rho^0 mesons from transverse photons. Measurements of the 15 combinations of spin-density matrix elements which completely define the angular distributions are presented and discussed.
The spin-density matrix elements obtained from the BPC low Q**2 data set.
The spin-density matrix elements obtained from the DIS high Q**2 data set.
The spin-density matrix elements obtained from the low Q**2 BPC data set in two W intervals.
The forward-jet cross section in deep inelastic ep scattering has been measured using the ZEUS detector at HERA with an integrated luminosity of 6.36 pb^-1. The jet cross section is presented as a function of jet transverse energy squared, E(T,jet)^2, and Q^2 in the kinematic ranges 10^-2<E(T,jet)^2/Q^2<10^2 and 2.5 10^-4<x<8.0 10^-2. Since the perturbative QCD predictions for this cross section are sensitive to the treatment of the log(E_T/Q)^2 terms, this measurement provides an important test. The measured cross section is compared to the predictions of a next-to-leading order pQCD calculation as well as to various leading-order Monte Carlo models. Whereas the predictions of all models agree with the measured cross section in the region of small E(T,Jet)^2/Q^2, only one model, which includes a resolved photon component, describes the data over the whole kinematic range.
Forward jet cross section as a function of ET**2/Q**2. The second DSYS error is the uncertainty in the energy scale of the calorimeter.
Measured forward-jet x distribution.