Date

Measurement of the $B^{\pm}$ production cross-section in pp collisions at $\sqrt{s} =$ 7 and 13 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 12 (2017) 026, 2017.
Inspire Record 1630633 DOI 10.17182/hepdata.149528

The production of $B^{\pm}$ mesons is studied in $pp$ collisions at centre-of-mass energies of 7 and 13 TeV, using $B^{\pm}\rightarrow J/\psi K^{\pm}$ decays and data samples corresponding to 1.0 fb$^{-1}$ and 0.3 fb$^{-1}$, respectively. The production cross-sections summed over both charges and integrated over the transverse momentum range $0<p_{\text{T}}< 40$ GeV/$c$ and the rapidity range $2.0<y<4.5$ are measured to be $\sigma(pp \rightarrow B^{\pm} X, \sqrt{s} = \text{7 TeV}) = 43.0 \pm 0.2 \pm 2.5 \pm 1.7\mu b,$ $\sigma(pp \rightarrow B^{\pm} X, \sqrt{s} = \text{13 TeV}) = 86.6 \pm 0.5 \pm 5.4 \pm 3.4\mu b,$ where the first uncertainties are statistical, the second are systematic, and the third are due to the limited knowledge of the $B^{\pm}\rightarrow J/\psi K^{\pm}$ branching fraction. The ratio of the cross-section at 13 TeV to that at 7 TeV is determined to be $2.02\pm0.02\text{(stat)}\pm0.12\text{(syst)}$. Differential cross-sections are also reported as functions of $p_{\text{T}}$ and $y$. All results are in agreement with theoretical calculations based on the state-of-art fixed next-to-leading order quantum chromodynamics.

4 data tables

Measured B$^\pm$ double-differential cross-section (in units of nb) at 7 TeV, as a function of $p_T$ and $y$.

Measured B$^\pm$ double-differential cross-section (in units of nb) at 13 TeV, as a function of $p_T$ and $y$.

Measured B$^\pm$ differential cross-sections (in units of nb) at 7 TeV and 13 TeV as functions of $p_T$ in the range $2.0<y<4.5$. The cross-section ratio between 13 TeV and 7TeV is also presented.

More…

Measurement of the $ZZ$ production cross section in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the $ZZ\to\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $ZZ\to\ell^{-}\ell^{+}\nu\bar{\nu}$ channels with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2017) 099, 2017.
Inspire Record 1494075 DOI 10.17182/hepdata.76732

A measurement of the $ZZ$ production in the $\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $\ell^{-}\ell^{+}\nu\bar{\nu}$ channels $(\ell = e, \mu)$ in proton--proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider at CERN, using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS experiment in 2012 is presented. The fiducial cross sections for $ZZ\to\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $ZZ\to \ell^{-}\ell^{+}\nu\bar{\nu}$ are measured in selected phase-space regions. The total cross section for $ZZ$ events produced with both $Z$ bosons in the mass range 66 to 116 GeV is measured from the combination of the two channels to be $7.3\pm0.4\textrm{(stat)}\pm0.3\textrm{(syst)}\pm0.2\textrm{(lumi)}$ pb, which is consistent with the Standard Model prediction of $6.6^{+0.7}_{-0.6}$ pb. The differential cross sections in bins of various kinematic variables are presented. The differential event yield as a function of the transverse momentum of the leading $Z$ boson is used to set limits on anomalous neutral triple gauge boson couplings in $ZZ$ production.

8 data tables

The measured fiducial cross sections and the combined total cross section compared to the SM predictions. For experimental results, the statistical, systematic, and luminosity uncertainties are shown. For the theoretical predictions, the combined statistical and systematic uncertainty is shown.

The measured differential cross-section normalized to the bin width in values of the leading reconstructed dilepton pT for the 4 lepton channel. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties.

The measured differential cross-section normalized to the bin width in values of the number of reconstructed jets for the 4 lepton channel. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties.

More…

Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to $WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ with the ATLAS detector at $\sqrt{s}=8$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 104, 2016.
Inspire Record 1444991 DOI 10.17182/hepdata.76843

This paper describes a measurement of fiducial and differential cross sections of gluon-fusion Higgs boson production in the $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ channel, using 20.3 fb$^{-1}$ of proton-proton collision data. The data were produced at a centre-of-mass energy of $\sqrt{s} = 8$ TeV at the CERN Large Hadron Collider and recorded by the ATLAS detector in 2012. Cross sections are measured from the observed $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ signal yield in categories distinguished by the number of associated jets. The total cross section is measured in a fiducial region defined by the kinematic properties of the charged leptons and neutrinos. Differential cross sections are reported as a function of the number of jets, the Higgs boson transverse momentum, the dilepton rapidity, and the transverse momentum of the leading jet. The jet-veto efficiency, or fraction of events with no jets above a given transverse momentum threshold, is also reported. All measurements are compared to QCD predictions from Monte Carlo generators and fixed-order calculations, and are in agreement with the Standard Model predictions.

22 data tables

Measured total fiducial cross section in fb.

Measured fiducial cross section in fb as a function of Njet. Jet PT>25 GeV for |eta|<2.4 and PT>30 GeV for 2.4<|eta|<4.5.

Measured fiducial cross section in fb/GeV as a function of pTH.

More…

$Z$ boson production in $p+$Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV measured with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.C 92 (2015) 044915, 2015.
Inspire Record 1384272 DOI 10.17182/hepdata.69247

The ATLAS Collaboration has measured the inclusive production of $Z$ bosons via their decays into electron and muon pairs in $p+$Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV at the Large Hadron Collider. The measurements are made using data corresponding to integrated luminosities of 29.4 nb$^{-1}$ and 28.1 nb$^{-1}$ for $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$, respectively. The results from the two channels are consistent and combined to obtain a cross section times the $Z \rightarrow \ell\ell$ branching ratio, integrated over the rapidity region $|y^{*}_{Z}|<3.5$, of 139.8 $\pm$ 4.8 (stat.) $\pm$ 6.2 (syst.) $\pm$ 3.8 (lumi.) nb. Differential cross sections are presented as functions of the $Z$ boson rapidity and transverse momentum, and compared with models based on parton distributions both with and without nuclear corrections. The centrality dependence of $Z$ boson production in $p+$Pb collisions is measured and analyzed within the framework of a standard Glauber model and the model's extension for fluctuations of the underlying nucleon-nucleon scattering cross section.

7 data tables

The centrality bias factors derived from data as explained in the text. Model calculations shown in the Figure are found in arXiv:1412.0976.

The differential $Z$ boson production cross section, $d\sigma/dy^\mathrm{*}_{Z}$, as a function of $Z$ boson rapidity in the center-of-mass frame $y^\mathrm{*}_{Z}$, for $Z\rightarrow ee$, $Z\rightarrow\mu\mu$, and their combination $Z\rightarrow\ell\ell$.

The differential cross section of $Z$ boson production multiplied by the Bjorken $x$ of the parton in the lead nucleus, $x_{Pb} d\sigma /dx_{Pb}$, as a function of $x_{Pb}$.

More…

Centrality dependence of inclusive J/$\psi$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 11 (2015) 127, 2015.
Inspire Record 1380193 DOI 10.17182/hepdata.69212

We present a measurement of inclusive J/$\psi$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. The measurement is performed with the ALICE detector down to zero transverse momentum, $p_{\rm T}$, in the backward ($-4.46 < y_{\rm cms} < -2.96$) and forward ($2.03 < y_{\rm cms} < 3.53$) rapidity intervals in the dimuon decay channel and in the mid-rapidity region ($-1.37 < y_{\rm cms} < 0.43$) in the dielectron decay channel. The backward and forward rapidity intervals correspond to the Pb-going and p-going direction, respectively. The $p_{\rm T}$-differential J/$\psi$ production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average $p_{\rm T}$ and $p^2_{\rm T}$ values. The nuclear modification factor, $Q_{\rm pPb}$, is presented as a function of centrality for the three rapidity intervals, and, additionally, at backward and forward rapidity, as a function of $p_{\rm T}$ for several centrality classes. At mid- and forward rapidity, the J/$\psi$ yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. The degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing $p_{\rm T}$ of the J/$\psi$. At backward rapidity, the $Q_{\rm pPb}$ is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions.

11 data tables

Differential cross sections dsigma_JPsi/dydpt as function of pt at backward (-4.46<y_cms<-2.96) centre-of-mass rapidity. The first uncertainty is statistical, the second and third ones are the systematic uncertainties. The third uncertainty is fully correlated over pT.

Differential cross sections d^2sigma^cent_JPsi/dydpt as function of pt for six centrality classes at forward (2.03<y_cms<3.53) centre-of-mass rapidity. The first uncertainty is statistical, the second and third ones are the systematic uncertainties. The third uncertainty is fully correlated over pT.

Differential cross sections dsigma^cent_JPsi/dy for four centrality classes at mid-rapidity (-1.37<y_cms<0.43). The first uncertainty is statistical, the second and third ones are the systematic uncertainties. The third uncertainty is fully correlated over centrality.

More…

Differential top-antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at $\sqrt{s}=7$ TeV in the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 06 (2015) 100, 2015.
Inspire Record 1345452 DOI 10.17182/hepdata.77064

Various differential cross-sections are measured in top-quark pair ($t\bar{t}$) events produced in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV at the LHC with the ATLAS detector. These differential cross-sections are presented in a data set corresponding to an integrated luminosity of $4.6$ fb$^{-1}$. The differential cross-sections are presented in terms of kinematic variables, such as momentum, rapidity and invariant mass, of a top-quark proxyreferred to as the pseudo-top-quark as well as the pseudo-top-quark pair system. The dependence of the measurement on theoretical models is minimal. The measurements are performed on $t\bar{t}$ events in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of them tagged as originating from a $b$-quark. The hadronic and leptonic pseudo-top-quarks are defined via the leptonic or hadronic decay mode of the $W$ boson produced by the top-quark decay in events with a single charged lepton. Differential cross-section measurements of the pseudo-top-quark variables are compared with several Monte Carlo models that implement next-to-leading order or leading-order multi-leg matrix-element calculations.

21 data tables

Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{h}})$in the muon channel. The results shown in this table are one of the inputs for the combined results.

Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{h}})$ in the electron channel. The results shown in this table are one of the inputs for the combined results.

Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $|y(\hat{t}_{\mathrm{h}})|$ in the muon channel. The results shown in this table are one of the inputs for the combined results.

More…

Diffractive photoproduction of dijetsin $ep$ collisions at HERA

The ZEUS collaboration Chekanov, Sergei ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 55 (2008) 177-191, 2008.
Inspire Record 763404 DOI 10.17182/hepdata.63789

Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb-1. The measurements were made in the kinematic range Q^2 < 1 GeV^2, 0.20 < y < 0.85 and x_pom < 0.025, where Q^2 is the photon virtuality, y is the inelasticity and x_pom is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E_T^jet, were required to satisfy E_T^jet > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range -1.5 < eta^jet < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton.

15 data tables

Differential cross section DSIG/DY for diffractive photoproduction of dijets as a function of Y.

Differential cross section DSIG/DM(P=5_6_7) for diffractive photoproduction of dijets as a function of M(P=5_6_7).

Differential cross section DSIG/DX(NAME=POMERON) for diffractive photoproduction of dijets as a function of X(NAME=POMERON).

More…

Three- and four-jet final states in photoproduction at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 792 (2008) 1-47, 2008.
Inspire Record 756660 DOI 10.17182/hepdata.45526

Three- and four-jet final states have been measured in photoproduction at HERA using the ZEUS detector with an integrated luminosity of 121 pb^-1. The results are presented for jets with transverse energy E_T^jet>6 GeV and pseudorapidity |eta^jet|<2.4, in the kinematic region given by the virtuality of the photon Q^2<1 GeV^2 and the inelasticity 0.2<y<0.85 and in two mass regions defined as 25<M_nj<50 GeV and M_nj>50 GeV, where M_nj is the invariant mass of the n-jet system. The four-jet photoproduction cross section has been measured for the first time and represents the highest-order process studied at HERA. Both the three- and four-jet cross sections have been compared with leading-logarithmic parton-shower Monte Carlo models, with and without multi-parton interactions. The three-jet cross sections have been compared to an order(alpha alpha_s^2) perturbative QCD calculation.

21 data tables

Cross section D(SIG)/M(P=4_5_6) as a function of M(P=4_5_6) .

Cross section D(SIG)/M(P=4_5_6_7) as a function of M(P=4_5_6_7) .

Cross section D(SIG)/X(C=GAMMA,OBS) as a function of X(C=GAMMA,OBS) in two jet invariant mass regions, 25 to 50 and > 50 GeV .

More…

Measurement of D*+- meson production in ep scattering at low Q^2

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Lett.B 649 (2007) 111-121, 2007.
Inspire Record 745058 DOI 10.17182/hepdata.45591

The production of D*+-(2010) mesons in ep scattering in the range of exchanged photon virtuality 0.05 &lt; Q^2 &lt; 0.7 GeV^2 has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb-1. The decay channels D*+ -> D0 pi+ with D0 -> K- pi+ and corresponding antiparticle decay were used to identify D* mesons and the ZEUS beampipe calorimeter was used to identify the scattered electron. Differential D* cross sections as functions of Q^2, inelasticity, y, transverse momentum of the D* meson, p_T(D*), and pseudorapidity of the D* meson, eta(D*), have been measured in the kinematic region 0.02 &lt; y &lt; 0.85, 1.5 &lt; p_T(D*) &lt; 9.0 GeV and |eta(D*)| &lt; 1.5. The measured differential cross sections are in agreement with two different NLO QCD calculations. The cross sections are also compared to previous ZEUS measurements in the photoproduction and DIS regimes.

7 data tables

Total cross section measurement.. The second DSYS error is due to the uncertainty in the branching ratio.

Measured differential cross section as a function of Q**2.

Measured differential cross section as a function of Y.

More…

Measurement of high-Q**2 deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Lett.B 637 (2006) 210-222, 2006.
Inspire Record 710347 DOI 10.17182/hepdata.45995

The cross sections for charged and neutral current deep inelastic scattering in e^+p collisions with a longitudinally polarised positron beam have been measured using the ZEUS detector at HERA. The results, based on data corresponding to an integrated luminosity of 23.8 pb^-1 at sqrt(s) = 318 GeV, are given for both e^+p charged current and neutral current deep inelastic scattering for both positive and negative values of the longitudinal polarisation of the positron beam. Single differential cross sections are presented for the kinematic region Q^2 > 200 GeV^2 . The measured cross sections are compared to the predictions of the Standard Model. A fit to the data yields sigma^CC (P_e = -1) = 7.4 +/- 3.9 (stat.) +/- 1.2 (syst.) pb, which is consistent within two standard deviations with the absence of right-handed charged currents in the Standard Model.

5 data tables

Total cross sections for the E+ P CC DIS at Q**2 > 200 GeV for the two different longitudinal positron polarizations and extrapolated with a linear fit to a polarization of -1.0 (including earlier unpolarized data).

E+ P CC DIS cross section as a function of Q**2.

E+ P CC DIS cross section as a function of X.

More…