The production of $\Upsilon$(2S) and $\Upsilon$(3S) mesons in lead-lead (PbPb) and proton-proton (pp) collisions is studied in their dimuon decay channel using the CMS detector at the LHC. The $\Upsilon$(3S) meson is observed for the first time in PbPb collisions, with a significance above five standard deviations. The ratios of yields measured in PbPb and pp collisions are reported for both the $\Upsilon$(2S) and $\Upsilon$(3S) mesons, as functions of transverse momentum and PbPb collision centrality. These ratios, when appropriately scaled, are significantly less than unity, indicating a suppression of $\Upsilon$ yields in PbPb collisions. This suppression increases from peripheral to central PbPb collisions. Furthermore, the suppression is stronger for $\Upsilon$(3S) mesons compared to $\Upsilon$(2S) mesons, extending the pattern of sequential suppression of quarkonium states in nuclear collisions previously seen for the $\psi$/J, $\psi$(2S), $\Upsilon$(1S), and $\Upsilon$(2S) mesons.
Measured $R_\text{AA}$ for the $\Upsilon(2S)$ state as functions of PbPb collision centrality, integrated over the full kinematic range $p_\text{T}$ < 30 GeV/c and |y| < 2.4. The global uncertainty "PP MB" represents the pp luminosity and PbPb $N_\text{MB}$ combined uncertainties, whereas the global uncertainty "PP 2S" corresponds to the uncertainty on the $\Upsilon(2S)$ pp yields.
Measured $R_\text{AA}$ for the $\Upsilon(2S)$ state as functions of PbPb collision centrality, integrated over the full kinematic range $p_\text{T}$ < 30 GeV/c and |y| < 2.4. The global uncertainty "PP MB" represents the pp luminosity and PbPb $N_\text{MB}$ combined uncertainties, whereas the global uncertainty "PP 2S" corresponds to the uncertainty on the $\Upsilon(2S)$ pp yields.
Measured $R_\text{AA}$ for the $\Upsilon(3S)$ state as functions of PbPb collision centrality, integrated over the full kinematic range $p_\text{T}$ < 30 GeV/c and |y| < 2.4. The global uncertainty "PP MB" represents the pp luminosity and PbPb $N_\text{MB}$ combined uncertainties, whereas the global uncertainty "PP 3S" corresponds to the uncertainty on the $\Upsilon(3S)$ pp yields.
The production of the $\rho$(770)${^{0}}$ meson has been measured at mid-rapidity $(|y|<0.5)$ in pp and centrality differential Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The particles have been reconstructed in the $\rho$(770)$\rightarrow\pi^{+}\pi^{-}$ decay channel in the transverse momentum ($p_{T}$) range $0.5-11$ GeV/$c$. A centrality dependent suppression of the ratio of the integrated yields $2\rho$(770)$^{0}/(\pi^{+}+\pi^{-})$ is observed. The ratio decreases by $\sim40\%$ from pp to central Pb-Pb collisions. A study of the $p_{T}$-differential $2\rho$(770)$^{0}/(\pi^{+}+\pi^{-})$ ratio reveals that the suppression occurs at low transverse momenta, $p_{T}<2$ GeV/$c$. At higher momentum, particle ratios measured in heavy-ion and pp collisions are consistent. The observed suppression is very similar to that previously measured for the $K^{*}$(892)$^{0}/K$ ratio and is consistent with EPOS3 predictions that may imply that rescattering in the hadronic phase is a dominant mechanism for the observed suppression.
Reconstructed mass of $\rho^{0}$ meson in pp collisions at $\sqrt{s}=2.76~{\rm TeV}$.
Reconstructed mass of $\rho^{0}$ meson in 0-20$\%$ central Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$.
Reconstructed mass of $\rho^{0}$ meson in 20-40$\%$ central Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$.