The event-by-event correlations between three flow amplitudes are measured for the first time in Pb--Pb collisions, using higher-order Symmetric Cumulants. We find that different three-harmonic correlations develop during the collective evolution of the medium, when compared with correlations that exist in the initial state. These new results cannot be interpreted in terms of previous lower-order flow measurements, since contributions from two-harmonic correlations are explicitly removed in the new observables. Comparison with Monte Carlo simulations provides new and independent constraints for the initial conditions and system properties of nuclear matter created in heavy-ion collisions.
Centrality dependence of ${\rm SC}(2,3,4)$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$~TeV.
Centrality dependence of ${\rm SC}(2,3,5)$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$~TeV.
Centrality dependence of ${\rm SC}(2,4,6)$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$~TeV.
$\phi$ meson measurements provide insight into strangeness production, which is one of the key observables for the hot medium formed in high-energy heavy-ion collisions. ALICE measured $\phi$ production through its decay in muon pairs in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 2.76 TeV in the intermediate transverse momentum range $2 < p_{\rm T} < 5$ GeV/$c$ and in the rapidity interval $2.5
phi yield as a function of $p_\mathrm{T}$ at forward rapidity in pp collisions.
phi yield as a function of $p_\mathrm{T}$ at forward rapidity in Pb-Pb collisions for 0-40\% centrality.
phi yield as a function of $p_\mathrm{T}$ at forward rapidity in Pb-Pb collisions for 40-90\% centrality (scaled by 3 in the figure).
Measurements of the inclusive J/$\psi$ yield as a function of charged-particle pseudorapidity density ${\rm d}N_{\rm ch}/\rm{d}\eta$ in pp collisions at $\sqrt{s}$ = 13 TeV with ALICE at the LHC are reported. The J/$\psi$ meson yield is measured at midrapidity ($|y|<0.9$) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity ($|\eta|<1$) and at forward rapidity ($-3.7<\eta<-1.7$ and $2.8<\eta<5.1$); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/$\psi$ yield with normalized ${\rm d}N_{\rm ch}/\rm{d}\eta$ is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively.
$N_{J/psi}/<N_{J/\psi}> / N_{ch}/<N_{ch}>$, $|y^{J/\psi}|<0.9$, $p_{T}^{J/\psi}$ integrated, event selection SPD
$N_{J/psi}/<N_{J/\psi}> / N_{ch}/<N_{ch}>$, $|y^{J/\psi}|<0.9$, $p_{T}^{J/\psi}$ integrated, event selection V0
$N_{J/psi}/<N_{J/\psi}> / N_{ch}/<N_{ch}>$, $|y^{J/\psi}|<0.9$, $p_{T}^{J/\psi}$ 0-4 and 4-8 GeV/c, event selection SPD
Multiplicity ($N_{\rm ch}$) distributions and transverse momentum ($p_{\rm T}$) spectra of inclusive primary charged particles in the kinematic range of $|\eta| < 0.8$ and 0.15 GeV/$c$$< p_{T} <$ 10 GeV/$c$ are reported for pp, p-Pb, Xe-Xe and Pb-Pb collisions at centre-of-mass energies per nucleon pair ranging from $\sqrt{s_{\rm NN}} = 2.76$ TeV up to $13$ TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the $p_{\rm T}$ spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators.
Charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Angular correlations of heavy-flavour and charged particles in high-energy proton-proton collisions are sensitive to the production mechanisms of heavy quarks and to their fragmentation as well as hadronisation processes. The measurement of the azimuthal-correlation function of prompt D mesons with charged particles in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV with the ALICE detector is reported, considering D$^{0}$, D$^{+}$, and D$^{*+}$ mesons in the transverse-momentum interval $3 < p_{\rm T} < 36$ GeV/$c$ at midrapidity ($|y| < 0.5$), and charged particles with $p_{\rm T} > 0.3$ GeV/$c$ and pseudorapidity $|\eta| < 0.8$. This measurement has an improved precision and provides an extended transverse-momentum coverage compared to previous ALICE measurements at lower energies. The study is also performed as a function of the charged-particle multiplicity, showing no modifications of the correlation function with multiplicity within uncertainties. The properties and the transverse-momentum evolution of the near- and away-side correlation peaks are studied and compared with predictions from various Monte Carlo event generators. Among those considered, PYTHIA8 and POWHEG+PYTHIA8 provide the best description of the measured observables. The obtained results can provide guidance on tuning the generators.
Comparison of the azimuthal-correlation distributions of D mesons (average of D$^{0}$, D$^{+}$, and D$^{*+}$) with $3 < p_{\rm T} < 5$ GeV/$c$ and charged particles with $0.3 < p_{\rm T} < 1$ GeV/$c$, in pp collisions at $\sqrt{s} = $5, 7, and 13 TeV, after baseline subtraction. Rapidity range for the D mesons is $|y^{\rm D}_{\rm cms}| < 0.5$. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.
Comparison of the azimuthal-correlation distributions of D mesons (average of D$^{0}$, D$^{+}$, and D$^{*+}$) with $8 < p_{\rm T} < 16$ GeV/$c$ and charged particles with $0.3 < p_{\rm T} < 1$ GeV/$c$, in pp collisions at $\sqrt{s} = $5, 7, and 13 TeV, after baseline subtraction. Rapidity range for the D mesons is $|y^{\rm D}_{\rm cms}| < 0.5$. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.
Comparison of the azimuthal-correlation distributions of D mesons (average of D$^{0}$, D$^{+}$, and D$^{*+}$) with $16 < p_{\rm T} < 24$ GeV/$c$ and charged particles with $0.3 < p_{\rm T} < 1$ GeV/$c$, in pp collisions at $\sqrt{s} = $5, 7, and 13 TeV, after baseline subtraction. Rapidity range for the D mesons is $|y^{\rm D}_{\rm cms}| < 0.5$. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.
The azimuthal ($\Delta\varphi$) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p$-$Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. Results are reported for electrons with transverse momentum $4
$\Delta\varphi$ distribution between heavy-flavor decay electrons and associated charged particles for $4 < p_{\rm T}^{\rm e} < 12$ ${\rm GeV}/c$ and $1 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$ in pp collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The publication shows $\Delta\varphi$ distribution only for the ranges $1 < p_{\rm T}^{\rm assoc} < 2$, $2 < p_{\rm T}^{\rm assoc} < 3$, and $5 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$.
$\Delta\varphi$ distribution between heavy-flavor decay electrons and associated charged particles for $4 < p_{\rm T}^{\rm e} < 12$ ${\rm GeV}/c$ and $1 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$ in p$\textendash$Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The publication shows $\Delta\varphi$ distribution only for the ranges $1 < p_{\rm T}^{\rm assoc} < 2$, $2 < p_{\rm T}^{\rm assoc} < 3$, and $5 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$.
Baseline of $\Delta\varphi$ distribution between heavy-flavor decay electrons and associated charged particles for $4 < p_{\rm T}^{\rm e} < 12$ ${\rm GeV}/c$ in pp and p$\textendash$Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The publication shows $\Delta\varphi$ distribution only for the ranges $1 < p_{\rm T}^{\rm assoc} < 2$, $2 < p_{\rm T}^{\rm assoc} < 3$, and $5 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$.
The inclusive J/$\psi$ meson production in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon collision of $\sqrt{s_{\rm NN}}$ = 5.02 TeV at midrapidity ($|y|$ < 0.9) is reported by the ALICE Collaboration. The measurements are performed in the dielectron decay channel, as a function of event centrality and J/$\psi$ transverse momentum $p_{\rm T}$, down to $p_{\rm T}$ = 0 GeV/$c$. The J/$\psi$ mean transverse momentum $\langle p_{\rm T} \rangle$ and $r_{\rm AA}$ ratio, defined as $\langle p^{\rm 2}_{\rm T} \rangle_{\rm PbPb}/\langle p^{\rm 2}_{\rm T} \rangle_{\rm pp}$, are evaluated. Both observables show a centrality dependence decreasing towards central (head-on) collisions. The J/$\psi$ nuclear modification factor $R_{\rm AA}$ exhibits a strong $p_{\rm T}$ dependence with a large suppression at high $p_{\rm T}$ and an increase to unity for decreasing $p_{\rm T}$. When integrating over the measured momentum range $p_{\rm T}$ < 10 GeV/$c$, the J/$\psi$ $R_{\rm AA}$ shows a weak centrality dependence. Each measurement is compared with results at lower center-of-mass energies and with ALICE measurements at forward rapidity, as well as to theory calculations. All reported features of the J/$\psi$ production at low $p_{\rm T}$ are consistent with a dominant contribution to the J/$\psi$ yield originating from charm quark (re)combination.
Transverse momentum dependence of the inclusive J/$\psi$ yields in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at midrapidity in the centrality intervals 0$-$20%, 20$-$40%, and 40$-$90%.
Inclusive J/$\psi$ $\langle p_{\rm T} \rangle$ in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at midrapidity as a function of the mean number of participant nucleons.
Inclusive J/$\psi$ $r_{\rm AA} = \langle p^{2}_{\rm T} \rangle_{\rm PbPb} / \langle p^{2}_{\rm T} \rangle_{\rm pp}$ in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at midrapidity as a function of the mean number of participant nucleons. The correlated systematic uncertainty due to the pp reference is not included and amounts to 4.7%, shown as the red box around unity in the paper figure.
This article presents groomed jet substructure measurements in pp and Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector. The Soft Drop grooming algorithm provides access to the hard parton splittings inside a jet by removing soft wide-angle radiation. We report the groomed jet momentum splitting fraction, $z_{\rm g}$, and the (scaled) groomed jet radius, $\theta_{\rm g}$. Charged-particle jets are reconstructed at midrapidity using the anti-kT algorithm with resolution parameters $R = 0.2$ and $R = 0.4$. In heavy-ion collisions, the large underlying event poses a challenge for the reconstruction of groomed jet observables, since fluctuations in the background can cause groomed parton splittings to be misidentified. By using strong grooming conditions to reduce this background, we report these observables fully corrected for detector effects and background fluctuations for the first time. A narrowing of the $\theta_{\rm g}$ distribution in Pb$-$Pb collisions compared to pp collisions is seen, which provides direct evidence of the modification of the angular structure of jets in the quark$-$gluon plasma. No significant modification of the $z_{\rm g}$ distribution in Pb$-$Pb collisions compared to pp collisions is observed. These results are compared with a variety of theoretical models of jet quenching, and provide constraints on jet energy-loss mechanisms and coherence effects in the quark$-$gluon plasma.
The production of the $\Lambda$(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at $\sqrt{s}$ = 7 TeV and in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel $\Lambda$(1520) $\rightarrow$ pK$^{-}$ and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p-Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons ($\pi$, K, K$_{\rm{S}}^0$, p, $\Lambda$) describes the shape of the $\Lambda$(1520) transverse momentum distribution up to 3.5 GeV/$c$ in p-Pb collisions. In the framework of this model, this observation suggests that the $\Lambda(1520)$ resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of $\Lambda(1520)$ to the yield of the ground state particle $\Lambda$ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p-Pb collisions on the $\Lambda$(1520) yield.
$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in inelastic pp collisions at $\sqrt{s}$ $\mathrm{=}$ 7 TeV.
$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in NSD p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.
$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV in multiplicity interval 0--20\%. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.
The first measurement of event-by-event antideuteron number fluctuations in high energy heavy-ion collisions is presented. The measurements are carried out at midrapidity ($|\eta| < 0.8$) as a function of collision centrality in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector. A significant negative correlation between the produced antiprotons and antideuterons is observed in all collision centralities. The results are compared with coalescence calculations, which fail to describe the measurement, in particular if a correlated production of protons and neutrons is assumed. Thermal-statistical model calculations describe the data within uncertainties only for correlation volumes that are different with respect to those describing proton yields and a similar measurement of net-proton number fluctuations.
Second order to first order cumulant ratio of the $\overline{d}$ multiplicity distribution as a function of collision centrality in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV.
Pearson correlation between the measured $\overline{p}$ and $\overline{d}$ as a function of collision centrality in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV.
Dependence of $\overline{p}$-$\overline{d}$ correlation on pseudorapidity acceptance of $\overline{p}$ and $\overline{d}$ selection in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. Results are for 0.0--10.0$\%$ collision centrality.