We present upper limits on the production of heavy leptons (L±) by neutrinos via the process νμ+Ne→L±+⋯, L±→e±+ν+ν¯. These limits imply that the L− and L+, if they couple in full strength to νμ, are heavier than 7.5 and 9 GeV, respectively. They also imply that the coupling strength νμ to the recently discovered 1.9-GeV heavy lepton τ is less than 0.025 of the normal νμ−μ coupling.
No description provided.
The cross section ratio of the elastic neutral current reaction ν p→ ν p to the quasi-elastic charged current reaction ν n→ μ − p has been measured in the kinematical region 0.3⩽ q 2 ⩽1.0 (GeV/ c ) 2 . The measured value is R M =0.17±0.08. Model dependent corrections are applied, especially for ν n→ ν n contamination, and the result is compared to various models.
(C=OBSERVED) and (C=CORRECTED) are the observed and corrected for the nuclear effects ratios.
Using 13.5-GeV beams at Stanford Linear Accelerator Center, we have compared electron and positron inelastic scattering over the range 1.2<|q2|<3.3 (GeV/c)2, 2<ν<9.5 GeV for the four-momentum and energy transfers, respectively. We find the ratio of the cross sections to be e+e−=1.0027±0.0035 (including statistical and systematic effects), with no significant dependence on q2 or ν. This result has appreciably smaller errors than previous attempts to find two-photon-exchange effects in electron or muon scattering.
No description provided.