Enhanced strange baryon production in Au+Au collisions compared to p+p at sqrts = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 77 (2008) 044908, 2008.
Inspire Record 750816 DOI 10.17182/hepdata.105866

We report on the observed differences in production rates of strange and multi-strange baryons in Au+Au collisions at sqrts = 200 GeV compared to pp interactions at the same energy. The strange baryon yields in Au+Au collisions, then scaled down by the number of participating nucleons, are enhanced relative to those measured in pp reactions. The enhancement observed increases with the strangeness content of the baryon, and increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at lower collision energy sqrts =17.3 GeV. The previous observations are for the bulk production, while at intermediate pT, 1 < pT< 4 GeV/c, the strange baryons even exceed binary scaling from pp yields.

18 data tables

Midrapidity E(i) as a function of $<N_{part}>$ for $\Lambda$, $\bar{\Lambda}$ ($|y| < 1.0$), $\Xi^{-}$, $\bar{\Xi}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature. Grand Canonical Model arrows(values in brackets), for $\Lambda$ E(2.6) and T(165 MeV) for $\bar{\Lambda}$ E(2.2) and T(170 MeV), for $\Xi$ E(10.7) and T(165 MeV), for anti-$\Xi$ E(7.5) and T(170 MeV).

Midrapidity E(i) as a function of $<N_{part}>$ for $\Omega^{-}+\bar{\Omega}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.

Midrapidity E(i) as a function of $<N_{part}>$ for inclusive $p$ ($|y| < 0.5$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.

More…

Version 2
Global polarization measurement in Au+Au collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 76 (2007) 024915, 2007.
Inspire Record 750410 DOI 10.17182/hepdata.98581

The system created in non-central relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Due to spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Lambda and anti-Lambda hyperon global polarization measurements in Au+Au collisions at sqrt{s_NN}=62.4 GeV and 200 GeV performed with the STAR detector at RHIC. The observed global polarization of Lambda and anti-Lambda hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |P_{Lambda,anti-Lambda}| <= 0.02, is compared to the theoretical values discussed recently in the literature.

11 data tables

(Color online) Invariant mass distribution for the $\Lambda$ (filled circles) and $\overline{\Lambda}$ (open squares) candidates after the quality cuts for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%).

(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ transverse momentum $p^{\Lambda}_{t}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%) and open squares indicate the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). Only statistical uncertainties are shown.

(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ pseudorapidity $\eta^{\Lambda}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%). A constant line fit to these data points yields $P_{\Lambda}=(2.8\pm 9.6)\times 10^{-3}$ with $\chi^{2}/ndf=6.5/10$. Open squares show the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). A constant line fit gives $P_{\Lambda}=(1.9\pm 8.0)\times 10^{-3}$ with $\chi^{2}/ndf=14.3/10$. Only statistical uncertainties are shown.

More…

Measurement of Transverse Single-Spin Asymmetries for Di-Jet Production in Proton-Proton Collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 99 (2007) 142003, 2007.
Inspire Record 751885 DOI 10.17182/hepdata.102938

We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity ($-1 \leq \eta \leq +2$) coverage for jets permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive deep inelastic scattering (SIDIS). We discuss theoretical attempts to reconcile the new results with the sizable transverse spin effects seen in SIDIS and forward hadron production in pp collisions.

4 data tables

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

More…

Energy dependence of $\pi^{\pm}$, $p$ and $\bar{p}$ transverse momentum spectrafor Au+Au collisions at $\sqrt{s_{\mathrm {NN}}}$~=~62.4 and 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 655 (2007) 104-113, 2007.
Inspire Record 747299 DOI 10.17182/hepdata.100592

We study the energy dependence of the transverse momentum (pT) spectra for charged pions, protons and anti-protons for Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV. Data are presented at mid-rapidity (|y| &lt; 0.5) for 0.2 &lt; pT &lt; 12 GeV/c. In the intermediate pT region (2 &lt; pT &lt; 6 GeV/c), the nuclear modification factor is higher at 62.4 GeV than at 200 GeV, while at higher pT (pT >7 GeV/c) the modification is similar for both energies. The p/pi+ and pbar/pi- ratios for central collisions at \sqrt{s_NN} = 62.4 GeV peak at pT ~ 2 GeV/c. In the pT range where recombination is expected to dominate, the p/pi+ ratios at 62.4 GeV are larger than at 200 GeV, while the pbar/pi- ratios are smaller. For pT > 2 GeV/c, the pbar/pi- ratios at the two beam energies are independent of pT and centrality indicating that the dependence of the pbar/pi- ratio on pT does not change between 62.4 and 200 GeV. These findings challenge various models incorporating jet quenching and/or constituent quark coalescence.

5 data tables

Midrapidity (|y| < 0.5) transverse momentum spectra for pions, protons, anti-protons for various event centrality classes for Au+Au at sqrt(sNN) = 62.4 GeV. Also shown to study the energy dependence are the central 0-12% pion, proton, anti-proton spectra for Au+Au at sqrt(sNN) = 200 GeV.

The insets show pi−/pi+ ratios at sqrt(sNN) = 62.4 GeV and anti-proton/proton ratios at sqrt(sNN) = 62.4 (0-10%) and 200 GeV (0-12%).

The minimum bias data shown here were extracted from the figures by xyscan. Hence, the dataset is not full (especially in the lower pT range where it is hard to distinguish points), and the statistical errors shown here are an upper limit of the statistical uncertainty based on the marker sizes.

More…

Partonic flow and Phi-meson production in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 99 (2007) 112301, 2007.
Inspire Record 746872 DOI 10.17182/hepdata.98969

We present first measurements of the $\phi$-meson elliptic flow ($v_{2}(p_{T})$) and high statistics $p_{T}$ distributions for different centralities from $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the $v_{2}$ of the $\phi$ meson is consistent with the trend observed for mesons. The ratio of the yields of the $\Omega$ to those of the $\phi$ as a function of transverse momentum is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/$c$, but disagrees at higher momenta. The nuclear modification factor ($R_{CP}$) of $\phi$ follows the trend observed in the $K^{0}_{S}$ mesons rather than in $\Lambda$ baryons, supporting baryon-meson scaling. Since $\phi$-mesons are made via coalescence of seemingly thermalized $s$ quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.

5 data tables

The elliptic flow, $v_{2}$($p_{T}$), for the $\phi$-meson as a function of centrality. The vertical error bars represent the statistical errors while the shaded bands represent the systematic uncertainties. For clarity, data points are shifted slightly.

(color online) Transverse momentum distributions of $\phi$-mesons from Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. For clarity, distributions for different centralities are scaled by factors of ten. Dashed lines represent the exponential fits to the distributions and the dotted lines are Levy function fits. Error bars represent statistical errors only.

(color online) The $N(\Omega)/N(\phi)$ ratio vs. $p_{T}$ for three centrality bins in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions. The solid and dashed lines represent recombination model predictions for central collisions [21] for total and thermal contributions, respectively.

More…

Spin asymmetry A(1)(d) and the spin-dependent structure function g1(d) of the deuteron at low values of x and Q**2.

The Compass collaboration Ageev, E.S. ; Alexakhin, V.Yu. ; Alexandrov, Yu. ; et al.
Phys.Lett.B 647 (2007) 330-340, 2007.
Inspire Record 742118 DOI 10.17182/hepdata.48534

We present a precise measurement of the deuteron longitudinal spin asymmetry A_1^d and of the deuteron spin-dependent structure function g_1^d at Q^2 < 1 GeV^2 and 4*10^-5 < x < 2.5*10^-2 based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured A_1^d and g_1^d are found to be consistent with zero in the whole range of x.

1 data table

Measured values of A1 and G1 at mean values of X, Q**2 and Y.


Mass, quark-number, and sqrt s(NN) dependence of the second and fourth flow harmonics in ultra-relativistic nucleus-nucleus collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 75 (2007) 054906, 2007.
Inspire Record 741917 DOI 10.17182/hepdata.104927

We present STAR measurements of the azimuthal anisotropy parameter $v_2$ for pions, kaons, protons, $\Lambda$, $\bar{\Lambda}$, $\Xi+\bar{\Xi}$, and $\Omega + \bar{\Omega}$, along with $v_4$ for pions, kaons, protons, and $\Lambda + \bar{\Lambda}$ at mid-rapidity for Au+Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV. The $v_2(p_T)$ values for all hadron species at 62.4 GeV are similar to those observed in 130 and 200 GeV collisions. For observed kinematic ranges, $v_2$ values at 62.4, 130, and 200 GeV are as little as 10%--15% larger than those in Pb+Pb collisions at $\sqrt{s_{_{NN}}}=17.3$ GeV. At intermediate transverse momentum ($p_T$ from 1.5--5 GeV/c), the 62.4 GeV $v_2(p_T)$ and $v_4(p_T)$ values are consistent with the quark-number scaling first observed at 200 GeV. A four-particle cumulant analysis is used to assess the non-flow contributions to pions and protons and some indications are found for a smaller non-flow contribution to protons than pions. Baryon $v_2$ is larger than anti-baryon $v_2$ at 62.4 and 200 GeV perhaps indicating either that the initial spatial net-baryon distribution is anisotropic, that the mechanism leading to transport of baryon number from beam- to mid-rapidity enhances $v_2$, or that anti-baryon and baryon annihilation is larger in the in-plane direction.

106 data tables

Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.

Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.

Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.

More…

The Deuteron Spin-dependent Structure Function g1d and its First Moment

The COMPASS collaboration Alexakhin, V.Yu. ; Alexandrov, Yu. ; Alexeev, G.D. ; et al.
Phys.Lett.B 647 (2007) 8-17, 2007.
Inspire Record 726688 DOI 10.17182/hepdata.48555

We present a measurement of the deuteron spin-dependent structure function g1d based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the first moment of g1d(x), and for the matrix element of the singlet axial current, a0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function Delta G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3 (GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3 in absolute value.

1 data table

Measured values of A1 and G1 at mean values of X, Q**2.. For the first two data points the minimum Q**2 cut was reduced from 1 to 0.7 GeV**2.


A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target

The COMPASS collaboration Ageev, E.S. ; Alexakhin, V.Yu. ; Alexandrov, Yu. ; et al.
Nucl.Phys.B 765 (2007) 31-70, 2007.
Inspire Record 729695 DOI 10.17182/hepdata.48535

New high precision measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible with zero, within the present statistical errors, which are more than a factor of 2 smaller than those of the published COMPASS results from the 2002 data. The final results from the 2002, 2003 and 2004 runs are compared with naive expectations and with existing model calculations.

24 data tables

Collins asymmetry against PT for all negative hadrons.

Collins asymmetry against Bjorken X for all negative hadrons.

Collins asymmetry against Z for all negative hadrons.

More…

Rapidity and species dependence of particle production at large transverse momentum for d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Abelev, B.I. ; Adams, J. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 76 (2007) 054903, 2007.
Inspire Record 726101 DOI 10.17182/hepdata.101349

We determine rapidity asymmetry in the production of charged pions, protons and anti-protons for large transverse momentum (pT) for d+Au collisions at \sqrt s_NN = 200 GeV. The identified hadrons are measured in the rapidity regions |y| < 0.5 and 0.5 < |y| < 1.0 for the pT range 2.5 < pT < 10 GeV/c. We observe significant rapidity asymmetry for charged pion and proton+anti-proton production in both rapidity regions. The asymmetry is larger for 0.5 < |y| < 1.0 than for |y|< 0.5 and is almost independent of particle type. The measurements are compared to various model predictions employing multiple scattering, energy loss, nuclear shadowing, saturation effects, and recombination, and also to a phenomenological parton model. We find that asymmetries are sensitive to model parameters and show model-preference. The rapidity dependence of \pi^{-}/\pi^{+} and \bar{p}/p ratios in peripheral d+Au and forward neutron-tagged events are used to study the contributions of valence quarks and gluons to particle production at high pT. The results are compared to calculations based on NLO pQCD and other measurements of quark fragmentation functions.

15 data tables

High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.

High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.

High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.

More…