The final states of charged hadrons produced in 280 GeV μp scattering are analysed with respect to their planarity and jet structure. Distributions of p ⊥ 2 in and p ⊥ out 2 are presented. A two jet structure in the forward hemisphere is observed for events with high p ⊥ tracks are predicted by QCD models.
PTIN**2 is the sum of the PTIN components squared.
PTOUT**2 is the sum of the PTOUT components squared.
A significant rate of forward proton and antiproton production has been observed in 120 and 280 GeV muon-proton scattering. The z and p T 2 distributions are presented. The dependence of the normalized production cross section on the muon variables x and Q 2 is studied.
No description provided.
No description provided.
The proton structure function F 2 has been measured in the range 2.5 ⪕ Q 2 ⪕ 170 GeV 2 and 0.03 ⪕ x ⪕ 0.65 . Scaling violation is clearly seen in the data. Results of fits to leading-order QCD are presented, together with values of the scale-breaking parameter λ.
No description provided.
No description provided.
No description provided.
A measurement of the nucleon structure function F 2 on iron is presented. The data cover a kinematic range of 3.25 ⪕ Q 2 ⪕ 200 GeV 2 and 0.05 ⪕ x ⪕ 0.65 . The data clearly show scaling violation. Fits in leading-order QCD have been made and values for the scale breaking parameter λ are given.
No description provided.
No description provided.
No description provided.
Differential cross sections for π ± p→ π ± p have been measured at P π between 378 and 687 MeV / c at 9 angles in the range −0.8⩽cos θ c.m. ⩽0.6. Scattered pions and recoil protons were detected in coincidence using scintillation counter hodoscopes. For almost all of the data the statistical and normalization uncertainties are each less than 2%. Our measurements are compared with existing data and the results of recent partial wave analyses.
No description provided.
No description provided.
No description provided.
The production of J/ ϑ and ϑ′ has been measured in 250 GeV muon iron interactions. The measured total cross sections are σ ( μ N → μ J/ ϑ X)=0.74±0.14 nb and σ ( μ N → μϑ ′X)=0.16 ± 0.07 nb. An upper limit on the cross section times branching ratio for ϒ production of BR · σ ( μ N → μϒ X) < 5.2 × 10 −38 cm 2 (at 90% confidence level) is obtained. About half the J/ ϑ cross section is found to have Z ⩾ 0.95 (where Z = E (J/ ϑ / ν ). The first-order photon-gluon fusion model agrees well with the measured Q 2 and ν dependence of the J/ ϑ data and is used to extract the gluon momentum distribution. However, higher order QCD effects are needed to explain the Z distribution of the J/ ϑ and the observed broadening of the P t 2 distribution with decreasing Z . The decay angular distributions of the J/ ϑ are found to be flat in the s -channel frame, but there is evidence for polarisation in the t -channel frame.
NUMBERS ARE CROSS-SECTIONS FOR PSI AND PSI(PRIME) BUT CROSS-SECTION*BR.RATIO FOR THE UPSILON.
THE COHERENT PRODUCTION IS NOT SUBTRACTED.
THE COHERENT PRODUCTION IS SUBTRACTED.
Dimuon and trimuon events produced by the interaction of 250 GeV muons in an iron target have been studied and are shown to originate predominantly from charm production. The data are used to measure the contribution of charm to the nucleon structure function F 2 . The cross sections for real photoproduction ( Q 2 =0) of charm in the current fragmentation region are derived as a function of photon energy and are found to be ∼0.6% of the total, hadronic photoproduction cross section in this energy range. The measured cross sections are found to be well represented by the photon-gluon fusion model. The charmed quark fragmentation function is obtained by using this model to fit the measured decay muon energy distribution and is found to be well represented by exp(1.6±1.6) Z . The data are used to study the momentum distribution of the gluons in the nucleon. An upper limit of 1.4% (90% confidence level) is set on the branching ratio D→ μν and a model-dependent upper limit on the branching ratio F→ μν is derived.
The charm contribution to the nucleon structure function from the dimuon data.
No description provided.
No description provided.
Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F 2 N ( Fe )/ F 2 N ( D ) is presented. The observed x -dependence of this ratio is in disagreement with existing theoretical predictions.
RANGE OF Q*2 VARIES WITH X. E.G. AT X=0.05 , 9<Q2<27. AT X=0.65 , 36<Q2<170 GEV**2.
The deuteron structure function F 2 d has been measured in 280 GeV μ + d interactions. Existing measurements of F 2 p , made with the same apparatus, are used to calculate F 2 p − F 2 n and F 2 n F 2 p . The ratio F 2 n F 2 p has a similar x dependence to that of earlier measurements at lower Q 2 .
No description provided.
No description provided.
No description provided.
We have measured differential cross sections for both π+p and π−p elastic scattering at incident-pion kinetic energies of 30, 50, 70, and 90 MeV in the center-of-mass angular range between 50° and 150°. The experiment detected pions scattered from a liquid-hydrogen target with multiwire proportional chambers and scintillation-counter range telescopes. The relative accuracy of each angular distribution is better than 5%, while the absolute cross sections have uncertainties of 4% to 25%. Our results for the absolute cross section for π+p scattering at 30 and 90 MeV are inconsistent with previous measurements. Our π−p measurements comprise the first extensive set of precision differential cross sections below 90 MeV.
No description provided.
No description provided.
No description provided.