A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5<Q^2<80\,{\rm GeV}^2$ and inelasticities $0.2<y<0.6$ is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of $290\,{\rm pb}^{-1}$. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of $Q^2$. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective $Q^2$-interval are also determined. Previous results of inclusive jet cross sections in the range $150<Q^2<15\,000\,{\rm GeV}^2$ are extended to low transverse jet momenta $5<P_{T}^{\rm jet}<7\,{\rm GeV}$. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of $Q^2$, the strong coupling constant $\alpha_s(M_Z)$ is determined in next-to-leading order.
Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 5.5-8.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.
Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 8.0-11.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.
Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 11.0-16.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.
This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 inverse femtobarns collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant alpha[S] is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of alpha[S](MZ) = 0.1171 +/- 0.0013 (exp) +0.0073/-0.0047 (theo).
Measured 3-jet mass cross section with uncertainties.
Overview of the NP correction factors and their uncertainties in the inner and outer rapidity region.
Determinations of $\alpha_s(M_Z)$ in the considered $m_3$ ranges.
We present data on energy-energy correlations (EEC) and their related asymmetry (AEEC) ine+e− annihilation in the centre of mass energy range 12<W≦46.8 GeV. The energy and angular dependence of the EEC in the central region is well described byOαs2 QCD plus a fragmentation term proportional to\({1 \mathord{\left/ {\vphantom {1 {\sqrt s }}} \right. \kern-\nulldelimiterspace} {\sqrt s }}\). BareO(α)s2 QCD reproduces our data for the large angle region of the AEEC. Nonperturbative effects for the latter are estimated with the help of fragmentation models. From various analyses using different approximations, we find that values for\(\Lambda _{\overline {MS} } \) in the range 0.1–0.3 GeV give a good description of the data. We also compare analytical calculations in QCD for the EEC in the back-to-back region to our data. The theoretical predictions describe well both the angular and energy dependence of the data in the back-to-back region.
Correlation function binned in cos(chi).
Correlation function binned in cos(chi).
Correlation function binned in cos(chi).
None
No description provided.
Reconstruction of charged D ∗ 's produced inclusively in e + e −. annihilation at CM energies near 34.4 GeV is accomplished in the decay modes D ∗ + → D 0 π + → K − gp + π 0 π + and D ∗ + → D 0 π + → K − gp + π − π + π + and their charge conjugates. Using these and previously reported D ∗ + → D 0 π + → K − gp + π + and D ∗ + → D 0 π + → K − gp + π + + missing π 0 channels we present evidence for hard gluon bremsstrahlung from charm quarks and show that the ratio of the quark-gluon coupling constant of charm quarks to the coupling constant obtained in the average hadronic event, α s c α rms = 100 ± 0.20 ± 1.20 . Our result provides evidence that the quark-gluon coupling constant is independent of flavor.
No description provided.
No description provided.
No description provided.
The ration R = σ (e + e − → hadrons) σ μμ was measured between 12.0 and 36.7 GeV c.m. energy W with a precision of typically ± 5.2%. R is found to be constant with an average R = 4.01 ± 0.03 (stat) ± (syst.) for W ⩾ 14 GeV. Quarks are found to be point-like, the mass parameter describing a possible quark form-factor being larger than 186 GeV. Fits including QCD corrections and a weak neutral-current contribution are presented.
DATA OF RUNPERIOD 1.
DATA OF RUNPERIOD 2.
R MEASURED IN SCANNING MODE.
We have analyzed 1113 events of the reaction e + e − → hadrons at CM energies of 12 and 30 GeV in order to make a detailed comparison with QCD. Perturbative effects can be well separated from effects depending on the quark and gluon fragmentation parameters to yield a reliable measurement of the coupling constant α S . At 30 GeV, the result is α S = 0.17 ± 0.02 (statistical) ± 0.03 (systematic). QCD model predictions, using the fragmentation parameters determined along with α S , agree with both gross properties of the final states and with detailed features of the three-jet states.
No description provided.
No description provided.
No description provided.