Date

Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at $\sqrt{s}$ = 13 TeV and in p$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 03 (2024) 092, 2024.
Inspire Record 2692432 DOI 10.17182/hepdata.151802

Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at $\sqrt{s}=13$ TeV and p$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV. The correlation functions are measured as a function of relative azimuthal angle $\Delta\varphi$ and pseudorapidity separation $\Delta\eta$ for pairs of primary charged particles within the pseudorapidity interval $|\eta| < 0.9$ and the transverse-momentum interval $1 < p_{\rm T} < 4$ GeV/$c$. Flow coefficients are extracted for the long-range correlations ($1.6 < |\Delta\eta| <1.8$) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events.

10 data tables

High and low multiplicity long-range delta phi correlations

Jet fragmentation yields of near and away side as a function of multiplicity class and and the ratio of them, please see the definition of x-axis

The second and third harmonic coefficients as a function of transverse momentum in pp and p--Pb collisions.

More…

Measurement of the low-energy antitriton inelastic cross section

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 848 (2024) 138337, 2024.
Inspire Record 2675130 DOI 10.17182/hepdata.145643

In this Letter, the first measurement of the inelastic cross section for antitriton$-$nucleus interactions is reported, covering the momentum range of $0.8 \leq p < 2.4$ GeV/$c$. The measurement is carried out using data recorded with the ALICE detector in pp and Pb$-$Pb collisions at a centre-of-mass energy per nucleon of 13 TeV and 5.02 TeV, respectively. The detector material serves as an absorber for antitriton nuclei. The raw yield of (anti)triton nuclei measured with the ALICE apparatus is compared to the results from detailed ALICE simulations based on the GEANT4 toolkit for the propagation of (anti)particles through matter, allowing one to quantify the inelastic interaction probability in the detector material. This analysis complements the measurement of the inelastic cross section of antinuclei up to $A=3$ carried out by the ALICE Collaboration, and demonstrates the feasibility of the study of the isospin dependence of inelastic interaction cross section with the analysis techniques presented in this Letter.

10 data tables

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in exp. data.

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in MC (sigma_inel x 0.75).

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in MC (sigma_inel x 1.0).

More…

First measurement of the absorption of $^{3}\overline{\rm He}$ nuclei in matter and impact on their propagation in the galaxy

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Nature Phys. 19 (2023) 61-71, 2023.
Inspire Record 2026264 DOI 10.17182/hepdata.133480

In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of $^{3}\overline{\rm He}$ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as input to calculations of the transparency of our Galaxy to the propagation of $^{3}\overline{\rm He}$ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing $^{3}\overline{\rm He}$ momentum from 25% to 90% for cosmic-ray sources. The results indicate that $^{3}\overline{\rm He}$ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.

21 data tables

Raw primary antihelium3-to-helium3 ratio as a function of the momentum p_primary.

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with default sigma_inel(3Hebar).

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with sigma_inel(3Hebar)x0.5.

More…

Version 2
K$^{0}_{\rm S}$- and (anti-)$\Lambda$-hadron correlations in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 945, 2021.
Inspire Record 1891391 DOI 10.17182/hepdata.114015

Two-particle azimuthal correlations are measured with the ALICE apparatus in pp collisions at $\sqrt{s} = 13$ TeV to explore strangeness- and multiplicity-related effects in the fragmentation of jets and the transition regime between bulk and hard production, probed with the condition that a strange meson (K$^{0}_{\rm S}$) or baryon ($\Lambda$) with transverse momentum $p_{\rm T} > 3$ GeV/c is produced. Azimuthal correlations between kaons or $\Lambda$ hyperons with other hadrons are presented at midrapidity for a broad range of the trigger ($3 < p_{\rm T}^{\rm trigg} < 20$ GeV/$c$) and associated particle $p_{\rm T}$ (1 GeV/$c$$< p_{\rm T}^{\rm assoc} < p_{\rm T}^{\rm trigg}$), for minimum-bias events and as a function of the event multiplicity. The near- and away-side peak yields are compared for the case of either K$^{0}_{\rm S}$ or $\Lambda$($\overline{\Lambda}$) being the trigger particle with that of inclusive hadrons (a sample dominated by pions). In addition, the measurements are compared with predictions from PYTHIA 8 and EPOS LHC event generators.

162 data tables

Two-dimensional $K_S^0$-h correlation function with $3<p_{\mathrm{T}}^{\mathrm{trigg}}< 4 \mathrm{GeV}/c$ and $1 \mathrm{GeV}/c<p_{\mathrm{T}}^{\mathrm{assoc}}< p_{\mathrm{T}}^{\mathrm{trigg}} $

Two-dimensional $K_S^0$-h correlation function with $3<p_{\mathrm{T}}^{\mathrm{trigg}}< 4 \mathrm{GeV}/c$ and $1 \mathrm{GeV}/c<p_{\mathrm{T}}^{\mathrm{assoc}}< p_{\mathrm{T}}^{\mathrm{trigg}} $

$\Delta\varphi$ projection of h-h correlation function with $3<p_{\mathrm{T}}^{\mathrm{trigg}}< 4 \mathrm{GeV}/c$ and $1 \mathrm{GeV}/c<p_{\mathrm{T}}^{\mathrm{assoc}}< p_{\mathrm{T}}^{\mathrm{trigg}} $

More…

Multiplicity dependence of light-flavor hadron production in pp collisions at $\sqrt{s}$ = 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.C 99 (2019) 024906, 2019.
Inspire Record 1684320 DOI 10.17182/hepdata.84282

Comprehensive results on the production of unidentified charged particles, $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{K}^{0}_{S}$, $\rm{K}$*(892)$^{0}$, $\rm{p}$, $\overline{\rm{p}}$, $\phi$(1020), $\Lambda$, $\overline{\Lambda}$, $\Xi^{-}$, $\overline{\Xi}^{+}$, $\Omega^{-}$ and $\overline{\Omega}^{+}$ hadrons in proton-proton (pp) collisions at $\sqrt{s}$ = 7 TeV at midrapidity ($|y| < 0.5$) as a function of charged-particle multiplicity density are presented. In order to avoid auto-correlation biases, the actual transverse momentum ($p_{\rm{T}}$) spectra of the particles under study and the event activity are measured in different rapidity windows. In the highest multiplicity class, the charged-particle density reaches about 3.5 times the value measured in inelastic collisions. While the yield of protons normalized to pions remains approximately constant as a function of multiplicity, the corresponding ratios of strange hadrons to pions show a significant enhancement that increases with increasing strangeness content. Furthermore, all identified particle to pion ratios are shown to depend solely on charged-particle multiplicity density, regardless of system type and collision energy. The evolution of the spectral shapes with multiplicity and hadron mass shows patterns that are similar to those observed in p-Pb and Pb-Pb collisions at LHC energies. The obtained $p_{\rm{T}}$ distributions and yields are compared to expectations from QCD-based pp event generators as well as to predictions from thermal and hydrodynamic models. These comparisons indicate that traces of a collective, equilibrated system are already present in high-multiplicity pp collisions.

106 data tables

Transverse momentum spectra of charged particles in V0M I multiplicity class

Transverse momentum spectra of charged particles in V0M II multiplicity class

Transverse momentum spectra of charged particles in V0M III multiplicity class

More…

Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 569, 2017.
Inspire Record 1507157 DOI 10.17182/hepdata.78803

Two-particle angular correlations were measured in pp collisions at $\sqrt{s} = 7$ TeV for pions, kaons, protons, and lambdas, for all particle/anti-particle combinations in the pair. Data for mesons exhibit an expected peak dominated by effects associated with mini-jets and are well reproduced by general purpose Monte Carlo generators. However, for baryon-baryon and anti-baryon--anti-baryon pairs, where both particles have the same baryon number, a near-side anti-correlation structure is observed instead of a peak. This effect is interpreted in the context of baryon production mechanisms in the fragmentation process. It currently presents a challenge to Monte Carlo models and its origin remains an open question.

6 data tables

$\Delta\eta$ integrated projections of correlation functions for combined pairs of $\rm pp+\overline{p}\overline{p}$, $\rm p\Lambda+\overline{p}\overline{\Lambda}$, and $\Lambda\Lambda+\overline{\Lambda}\overline{\Lambda}$.

$\Delta\eta$ integrated projections of correlation functions for combined pairs of $\rm p\overline{p}$, $\rm p\overline{\Lambda}+\overline{p}\Lambda$, and $\Lambda\overline{\Lambda}$.

$\Delta\eta$ integrated projections of correlation functions for combined pairs of $\rm pp+\overline{p}\overline{p}$ for two transverse momentum intervals (a) $0.5 < p_{\rm T} < 1.25$ GeV/$c$ and (b) $1.25 < p_{\rm T} < 2.5$ GeV/$c$.

More…

Pseudorapidity distribution of charged hadrons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 751 (2015) 143-163, 2015.
Inspire Record 1384119 DOI 10.17182/hepdata.69375

The pseudorapidity distribution of charged hadrons in pp collisions at sqrt(s) =13 TeV is measured using a data sample obtained with the CMS detector, operated at zero magnetic field, at the CERN LHC. The yield of primary charged long-lived hadrons produced in inelastic pp collisions is determined in the central region of the CMS pixel detector (abs(eta)<2) using both hit pairs and reconstructed tracks. For central pseudorapidities (abs(eta)<0.5), the charged-hadron multiplicity density is dN/d(eta)[charged,abs(eta) < 0.5] = 5.49 +/- 0.01 (stat) +/- 0.17 (sys), a value obtained by combining the two methods. The result is compared to predictions from Monte Carlo event generators and to similar measurements made at lower collision energies.

1 data table

Distribution of the pseudorapidity density of charged hadrons in the region $|\eta|<2$ in inelastic pp collisions are 13 TeV.


Production of leading charged particles and leading charged-particle jets at small transverse momenta in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 92 (2015) 112001, 2015.
Inspire Record 1380605 DOI 10.17182/hepdata.70721

The per-event yield of the highest transverse momentum charged particle and charged-particle jet, integrated above a given pt(min) threshold starting at pt(min) = 0.8 and 1 GeV, respectively, is studied in pp collisions at sqrt(s) = 8 TeV. The particles and the jets are measured in the pseudorapidity ranges abs(eta) < 2.4 and 1.9, respectively. The data are sensitive to the momentum scale at which parton densities saturate in the proton, to multiple partonic interactions, and to other key aspects of the transition between the soft and hard QCD regimes in hadronic collisions.

2 data tables

Charged particles within $|\eta| < 2.4$ with $N_{ch}(p_T>40\;MeV)>0$ in $5.3<|\eta|<6.5$.

Charged particle jets within $|\eta| < 1.9$ with anti-kt (R=0.5) and $N_{ch}(p_T>40\;MeV)>0$ in $5.3<|\eta|<6.5$.


Measurement of Pseudorapidity Distributions of Charged Particles in Proton-Proton Collisions at $\sqrt{s}$ = 8 TeV by the CMS and TOTEM Experiments

The CMS & TOTEM collaborations Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 74 (2014) 3053, 2014.
Inspire Record 1294140 DOI 10.17182/hepdata.66893

Pseudorapidity (eta) distributions of charged particles produced in proton-proton collisions at a centre-of-mass energy of 8 TeV are measured in the ranges abs(eta) < 2.2 and 5.3 < abs(eta) < 6.4 covered by the CMS and TOTEM detectors, respectively. The data correspond to an integrated luminosity of 45 inverse microbarns. Measurements are presented for three event categories. The most inclusive category is sensitive to 91-96% of the total inelastic proton-proton cross section. The other two categories are disjoint subsets of the inclusive sample that are either enhanced or depleted in single diffractive dissociation events. The data are compared to models used to describe high-energy hadronic interactions. None of the models considered provide a consistent description of the measured distributions.

3 data tables

Charged particle multiplicity (Inclusive) -- syst -- BB: bin-by-bin uncertainty.

Charged particle multiplicity (Non Single Diffractive dissociation (NSD) enhanced) -- syst -- BB: bin-by-bin uncertainty.

Charged particle multiplicity (Single Diffractive dissociation (SD) enhanced) -- syst -- BB: bin-by-bin uncertainty.


Measurement of the inelastic proton-proton cross section at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 722 (2013) 5-27, 2013.
Inspire Record 1193338 DOI 10.17182/hepdata.68126

A measurement is presented of the inelastic proton-proton cross section at a centre-of-mass energy of sqrt(s) = 7 TeV. Using the CMS detector at the LHC, the inelastic cross section is measured through two independent methods based on information from (i) forward calorimetry (for pseudorapidity 3 < abs(eta) < 5), in collisions where at least one proton loses more than 5E-6 of its longitudinal momentum, and (ii) the central tracker (abs(eta) < 2.4), in collisions containing an interaction vertex with more than 1, 2, or 3 tracks with transverse momenta pT > 200 MeV. The measurements cover a large fraction of the inelastic cross section for particle production over about 9 units of pseudorapidity and down to small transverse momenta. The results are compared with those of other experiments, and with models used to describe high-energy hadronic interactions.

1 data table

$\sigma_\text{inel}$ at $\sqrt{s}=7$ TeV $\xi>5x10^{-6}$.