We present results on vector-meson photoproduction via γp→Vp in the LBL-SLAC 82-in. hydrogen bubble chamber exposed to a linearly polarized photon beam at 2.8, 4.7, and 9.3 GeV. We find ρ0 production to have the characteristics of a diffractive process, i.e., a cross section decreasing slowly with energy and a differential cross section with slope of ∼ 6.5 GeV−2. Within errors the ρ0 production amplitudes are entirely due to natural-parity exchange. s-channel helicity is conserved to a high degree in the γ→ρ0 transition. We find evidence for small helicity-flip amplitudes for ππ pairs in the ρ0 region. Photoproduction of ω mesons is separated into its natural- (σN) and unnatural- (σU) parity-exchange contributions. The Eγ and t dependence and the spin density matrix of the unnatural-parity-exchange contribution are consistent with a one-pion-exchange process. The natural-parity-exchange part has characteristics similar to ρ0 production. At 9.3 GeV the ratio of σ(ρ0) to σN(ω) is ∼ 7. The slope of the φ differential cross section is ∼ 4.5 GeV−2, smaller than that of ρ0 and ω production. Natural-parity exchange is the main contributor to φ production. No evidence for higher-mass vector mesons is found in ππ, πππ, or KK¯ final states. The s and t dependences of Compton scattering as calculated from ρ, ω, and φ photoproduction using vector-meson dominance agree with experiment, but the predicted Compton cross section is too small by a factor of 2.
No description provided.
No description provided.
No description provided.
Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.
FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.
No description provided.
NO TMIN CORRECTION HAS BEEN MADE.
Data from the reactions π−p→π−π−π+p and π+p→π+π+π−p have been obtained at 16 GeV/c in approximately equal samples from the BNL 80-in. hydrogen bubble chamber. We have studied both reactions for resonance production and compared our results with predictions of the one-pion-exchange model (OPEM) calculated by Wolf. The four-body longitudinal phase-space (LPS) plot suggested by Van Hove was used to analyze the data from both reactions. The events were separated according to distinct regions of the LPS plot in order to study the following classes of quasi-two-body final states: (1) diffractively produced three-pion states, (2) diffractively produced ππp states, (3) double-resonance production such as ρ0Δ++, (4) single-resonance production such as π−π−Δ++. The Van Hove analysis provided a much cleaner separation of resonances from background effects than the usual techniques. We observe production of the A1 and A2 mesons as well as the N*(1470) and N*(1700) isobars in the π+π−p system for both reactions. There is strong formation of the doubly resonant states ρ0Δ++ and f0Δ++ and the general features of the nondiffractive events are all in good agreement with one-pion exchange. Detailed comparisons between the data and the OPEM in each LPS plot region show that Van Hove analysis provides a sensitive test for the OPE model.
DEDUCED FROM PRONG CROSS SECTIONS NORMALIZED USING THE DATA OF K. J. FOLEY ET AL., PRL 19, 330 (1967).
No description provided.
No description provided.
Total and differential cross sections are presented for the reaction KL 0p→KS 0p from 1.3 to 8.0 GeVc as measured in an exposure of the Stanford Linear Accelerator Center 40-in. hydrogen bubble chamber to a neutral beam. The forward points of dσ(KL 0p→KS 0p)dt together with K+n and K−n total cross sections are used to determine the intercept of the effective Regge trajectory, α(0)=0.47±0.09, and the regeneration phase ϕf=−43∘±8∘.
No description provided.
FULL T REGION.
FULL T REGION.
Production of B(1235) and ρ(1710) mesons is observed in the four-pion decay modes π+π+π−π0 in 16−GeVc π±p collisions. Decay distributions and branching fractions into various modes are presented. Absence of the two-pion mode π−π0 for the ρ(1710) is noted.
No description provided.
The differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center of mass have been measured at 33 incident-pion momenta in the range 600 to 1280 MeV/c. Angular distributions are presented. The extrapolated differential cross sections at 180° show considerable structure, in particular a dip near 1150 MeV/c. In general the near-180° cross sections do not agree with existing phase shift solutions above 1000 MeV/c
INTERPOLATED DATA.
INTERPOLATED DATA.
INTERPOLATED DATA.
We present results of an experiment to measure the differential cross section of the reaction π−p→π0n between the forward and backward peaks. The measurements were made at incident π− momenta of 3.67 and 4.83 GeVc. The t range 1.7<~|t|<~4.9 (GeVc)2 was covered at the lower momentum and 1.8<~|t|<~7 (GeVc)2 at the higher momentum. At the lower momentum the cross section is essentially constant between |t|=2.4 and 4.8 (GeVc)2 while at the higher momentum the angular distribution exhibits a broad minimum centered at |t|=4.4 (GeVc)2.
No description provided.
No description provided.
Elastic π±−p, K−−p, and p¯−p scattering cross sections have been measured using three different experimental arrangements covering the c.m. angular regions ∼20°-120°, ∼135°-169°, and ∼165°-180° at incident momenta from 6 to 17 GeV/c. In the region 130°-180°, only π±−p scattering was measured. In the angular region near 180°, the energy dependences and shapes of the π−p backward peaks were determined up to crossed-momentum transfers of u∼−2 (GeV/c)2. At all energies, the π+−p backward peak had a sharp dip at u=−0.13 (GeV/c)2, with no similar effect in the π−−p case. Nearly complete angular distributions of π−−p elastic scattering from 20° to 180° have been obtained at 6 and 10 GeV/c. These results at 6 and 10 GeV/c as well as at 8 GeV/c reveal a sharp dip in π−−p scattering at t=−3 (GeV/c)2. Several structures in the form of dips or shoulders were seen in the p¯−p angular distributions also, with less pronounced structure observed in K−−p scattering. At fixed momentum transfer, all cross sections when expressed as dσdt appear to be decreasing with increasing energy.
'1'. '2'. '3'. '4'.
No description provided.
No description provided.
The production of N ∗ (1400) isobar in the reaction pp → pN ∗+ (1400), where N ∗ (1400) → n π + and p π 0 , is investigated with the aid of one-pion exchange model. The one-pion exchange mechanism does not seem to dominate the production process. The isospin of N ∗ (1400) is found to be I = 1 2 , and the elasticity of the resonance is estimated to be 0.66.
Axis error includes +- 0.0/0.0 contribution (?////Due to fitting mass spectrum).
We measured elastic-scattering angular distributions for π++p scattering at 1.5, 2.0, and 2.5 BeV/c using spark chambers to detect scattered pions and protons. A bump that decreases in amplitude with increasing momentum is observed in the backward hemisphere in the 1.5- and 2.0-BeV/c distributions, but is not observed in the 2.5-BeV/c distributions. It appears reasonable to attribute this phenomenon to the 1.45-BeV/c resonance observed in the π++p total cross section. The data are compared with π−+p data and are found to support the theoretical prediction that the scattering cross sections for both charge states should become equal at high energies. We fit the angular distributions with a power series in cosθ*, and compare the extrapolated values for the scattering cross section in the backward direction with the calculation of the neutron-exchange pole contribution to the cross section. The "elementary" neutron-pole term contribution is calculated to be 90 mb/sr at 2.0 BeV/c, in violent disagreement with the extrapolated value, ≈0.5 mb/sr.
No description provided.
No description provided.
No description provided.