We have measured the production polarization and magnetic moment of a sample of 89×103Ξ− hyperons produced in the inclusive reaction p(400 GeV/c)+Cu→Ξ−+X. The weighted average of the polarization is -0.070±0.008±0.010 at a pt of 0.63 GeV/c. The Ξ−'s magnetic moment yields the value μΞ=−0.661±0.036±0.036 nuclear magnetons. The first error is statistical, the second systematic.
No description provided.
We report measurements of spin correlations and analyzing powers in He→3(p→, 2p) and He→3(p→, pn) quasielastic scattering as a function of momentum transfer and missing momentum at 197 MeV using a polarized internal target at the Indiana University Cyclotron Facility Cooler Ring. At sufficiently high momentum transfer we find He→3(p→, pn) spin observables are in good agreement with free p−n scattering observables, and therefore that He→3 can serve as a good polarized neutron target. The extracted polarizations of nucleons in He→3 at low missing momentum are consistent with Faddeev calculations.
QUASIELASTIC SCATTERING.
Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\vec\gamma + p \to K^+ + \vec\Lambda$ and $\vec\gamma + p \to K^+ + \vec\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\cos\theta_{K^+}^{c.m.}< +0.95$. For the $\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\it total} $\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.032 GeV and W = 1.679 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.132 GeV and W = 1.734 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.232 GeV and W = 1.787 GeV.
Using the Crystal Ball detector at thee+e− storage ring DORIS II, we have measured the branching fraction to muon pairsBμμ of the Υ(
Corrected cross section. Statistical and point to point systematic errors combined. Additional systematic error given above. The storage ring SQRT(S) has a 7.9 +- 0.2 MeV energy spread around the values given.
Corrected cross section. Statistical and point to point systematic errors combined. Additional systematic error given above.The storage ring SQRT(S) has a 8.2 +- 0.3 MeV energy spread around the values given.
Longitudinal and transverse momentum spectra of final state hadrons produced in deep-inelastic muon-deuterium scattering at incident muon energy of 490 GeV have been measured up to a hadronic center of mass energy of 30 GeV. The longitudinal distributions agree well with data from earlier muon-nucleon scattering experiments; these distributions tend to increase in steepness as the center of mass energy increases. Comparisons with e + e − data at comparable center of mass energies indicate slight differences. The transverse momentum distributions show an increase in mean p T 2 with an increase in the center of mass energy.
No description provided.
No description provided.
No description provided.
Using the Crystal Ball detector operating at the DORIS II storage ring we have measured the leptonic partial widthsГeeof the Υ(1S) and Υ(2S) reson
No description provided.
The ratio of cross sections for inelastic muon scattering on xenon and deuterium nuclei was measured at very low Bjorken x (0.000 02
Data using Electromagnetic Cuts.
Data using Hadron Requirement.
The Crystal Ball detector has been used at the DORIS II storage ring at DESY to study the reactionγγ→π0π0π0 in theπ0π0π0 invariant mass range from 850 MeV/c2 to 2600 MeV/c2. An enhancement around 1750 MeV/c2 is attributed to theπ2(1670) resonance. The observedπ0π0 invariant mass distribution and theπ0 angular distributions are consistent with those expected for the decay chainπ2→π0f2(1270)→π0π0π0. From our measurements we find the following resonance parameters: two photon partial width\(\Gamma _{\pi _2 }^{\gamma \gamma }= (1.41 \pm 0.23 \pm 0.28)keV\), massM(π2)=(1742±31±49)MeV/c2. and total width\(\Gamma _{\pi _2 }^{tot}= (236 \pm 49 \pm 36)MeV\).
Data read from graph.
Cross section times branching ratio to 3pi0 assuming the decay chain pi2 --> pi0f2 --> 3pi0.
The rationR=σ(e+e−→hadrons)/σ(e+e−→ µ+ µ−) was measured with the LENA detector at DORIS in a scan between 7.40 and 7.48 GeV and between 8.67 and 9.43 GeV center of mass energies. Corrected for QED radiative effects,R is found to be constant with an average value ofR=3.37 ±0.06stat±0.23syst. No narrow resonances withΓee(Γhad/Γtot)⊗0.30 keV (95% C.L.) and no steps have been observed. Based on this value ofR, revised values for υ(1S) resonance parameters are presented.
No description provided.
No description provided.
NUMERICAL VALUES GIVEN IN APPENDIX IN PREPRINT. STATISTICAL ERRORS ONLY.
We present a study of inclusive π0 and ŋ production ine+e− annihilation at
Particle multiplicities in the continuum.
Particle multiplicities in the UPSILON (1S).
Inclusive pi0 spectra in the continuum.