An experimental investigation of the reaction γ p → p p p at photon energies 4.7 ⩽ E γ ⩽ 6.6 GeV is described. The main results are the measurement of the cross section as a function of energy, a discussion of the main dynamical features of the reaction and the observation of a narrow p p mass state at 2.024 ± 0.005 GeV with a width of 29 ± 13 MeV.
OBSERVATION OF THIS CHANNEL AS A CONSISTENCY CHECK ON THE NORMALIZATION.
No description provided.
MEASUREMENTS OF CROSS SECTIONS OF MASS SIGNALS AT 1.94 AND 2.024 GEV, EVALUATE BY FITTING TWO BREIT WIGNERS AND CONSTANT BACKGROUND TO (AP P) MASS SPECTRUM. ERRORS ARE STATISTICAL ONLY.
We present an analysis of the K ππ system produced in 10 GeV/ c K + p interactions. We show that the low-mass enchancement between 1.2 and 1.4 GeV/ c 2 on the K ππ mass spectrum is predominantly 1 + throughout, give the relative amplitudes for the decay of this system into K ∗ (890) π and K ρ , and offer new evidence for the presence of two 1 + resonances in this mass region.
No description provided.
DIFFERENTIAL CROSS SECTION FOR THREE MASS BANDS IN Q-REGION. NORMALIZATION UNCERTAIN - NO UNITS FOR D(SIG)/DT GIVEN ON FIGURE. NUMERICAL VALUES TAKEN FROM THE COMPILATION LST7V2 FOX 72B. ERRORS ADDED AS 1/SQRT(EVENTS).
We have measured correlations between single high- p T (1.5< p T <3.5 GeV/ c ) trigger particles on one side of the beam line and groups of particles entering a calorimeter on the opposite side of the beam line. The mean transverse momentum measured in the calorimeter is found to increase with the trigger-particle transverse momentum. The coplanarity of the events increases with trigger-particle transverse momentum. We have compared our data with the predictions of a phenomenological four-jet model. To fit our data we find that we must give large (0.9 GeV/ c ) mean transverse momenta to the constituents of the initial hadrons.
No description provided.
No description provided.
No description provided.
Cross section and pp¯ in variant mass distribution of the reaction γp→pp¯p are presented. Further evidence for a narrow pp¯ mass state at 2.023 GeV will be given.
Axis error includes +- 0.0/0.0 contribution (?////SYSTEMATIC ERRORS HAVE BEEN FOLDED IN QUADRATURE WITH STATISTICAL ERRORS).
Axis error includes +- 0.0/0.0 contribution (?////SYSTEMATIC ERRORS HAVE BEEN FOLDED IN QUADRATURE WITH STATISTICAL ERRORS).
Axis error includes +- 0.0/0.0 contribution (?////SYSTEMATIC ERRORS HAVE BEEN FOLDED IN QUADRATURE WITH STATISTICAL ERRORS).
The production of Jψ mesons in Z0 decays is studied using 3.6 million hadronic events recorded by the OPAL detector at LEP. The inclusive Z0 to Jψ and b-quark to Jψ branching ratios are measured from the total yield of Jψ mesons, identified from their decays into lepton pairs. The Jψ momentum distribution is used to study the fragmentation of b-quarks. The production rate of ψ′ mesons, identified from their decays into a Jψ and a π+π− pair, is measured as well. The following results are obtained: ${Br(Z^{0}⌝ghtarrow {⤪ J}/ i X)=(3.9pm 0.2pm 0.3)cdot 10^{-3} {⤪ and} ↦op Br(Z^0⌝ghtarrow i ^⌕ime X)=(1.6pm 0.3pm 0.2)cdot 10^{-3}, }$ where the first error is statistical and the second systematic. Finally the Jψ sample is used to reconstruct exclusive b-hadron decays and calculate the corresponding b-hadron branching ratios and masses.
No description provided.
No description provided.
No description provided.
The pp total cross section difference between pure transverse spin states was measured in the laboratory momentum range 1–3 GeV/ c . Significant differences were found and these differences show striking energy dependence. This structure is in disagreement with the predictions of simple exchange models.
No description provided.
REVISED DATA (J. D. LESIKAR, PRIV COMM, 19 JUN 1981). NOW CORRECTED FOR COULOMB-NUCLEAR INTERFERENCE. IN ADDITION, THE LOWEST MOMENTUM DATA POINT IS NOW KNOWN TO BE IN ERROR.
The reaction γ + p → Φ + p has been measured using a spark chamber spectrometer and a tagged photon beam in the energy range from 4.6 to 6.7 GeV. Approximately 3500 photoproduced elastic Φ-events have been collected in the t -range between t min and t = −0.4 (GeV/ c ) 2 . Cross sections and t -distributions are presented.
NO MARKED ENERGY DEPENDENCE.
A mass-dependent asymmetry was observed in the decay angular distribution of a photoproduced K + K − system near the K + K − threshold. The corresponding moments 〈 Y 1 0 〉 have been evaluated. Interpreting the asymmetry as an S-P wave interface due to the states S 993 ∗ (0 + ) and ø 1019 (1 − ) one can compute the moments 〈 Y 1 0 〉 through an amplitude analysis. The theoretical calculation reproduces the experimental results well, if one assumes a real S-wave amplitude for the S 993 ∗ . The data cannot be explained by a non-resonant real S-wave. Other possibilities have been discussed. An estimate of the photoproduction cross section of the S ∗ → K + K − can be given on the basis of the above hypothesis.
No description provided.
The differential cross section of the reaction ( γ p → p φ ) has been measured in the t range 0 ⩽ t ⩽ 0.4 GeV 2 and for photon energies from 3.0 to 6.7 GeV. In particular for the small t region the measurement accuracy was better than 10%. We obtained for the slope parameter B in an exponential parametrization of the differential cross section d σ /d t = A e − Bt values of B ⋍ 6 ± 0.5 GeV −2 which are significantly larger than the slopes obtained by most other experiments at higher t values. This indicates a t dependence of B particularly in the small t region.
No description provided.
No description provided.
No description provided.
An experiment resulting in the first measurement of the isospin-mixing, charge-symmetry-violating component of the n−p interaction has been performed. The experiment determined the difference in the angles of the zero crossing of the neutron and proton analyzing powers An and Ap at 477 MeV. In terms of the laboratory scattering angle of the neutron, the measured difference is θ0n(An)−θ0n(Ap)=+0.13° ±0.06° (±0.03°), where the second error is a worst-case estimate of systematic error. The resulting difference in the analyzing powers at the zero-crossing angle is An−Ap=+0.0037 ±0.0017 (±0.0008).
No description provided.