We present measurements of two-particle angular correlations between high-transverse-momentum ($2<p_T<11$ GeV/$c$) $\pi^0$ observed at midrapidity ($|\eta|<0.35$) and particles produced either at forward ($3.1<\eta<3.9$) or backward ($-3.7<\eta<-3.1$) rapidity in $d$$+$Au and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The azimuthal angle correlations for particle pairs with this large rapidity gap in the Au-going direction exhibit a ridge-like structure that persists up to $p_T{\approx}6$ GeV/$c$ and which strongly depends on collision centrality, which is a similar characteristic to the hydrodynamical particle flow in A+A collisions. The ridge-like structure is absent in the $d$-going direction as well as in $p$$+$$p$ collisions, in the transverse-momentum range studied. The results indicate that the ridge-like structure is shifted in the Au-going direction toward more central collisions, similar to the charged-particle pseudorapidity distributions.
Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: (a) the negative of the dipole coefficient, $-c_1$; (b) the quadrupole coefficient $c_2$; (c) the ratio ${-c_2}/{c_1}$.
Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: Fractional systematic uncertainty on the quadrupole coefficient $c_2$ for $d$+Au.
Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: Fractional systematic uncertainty on the quadrupole coefficient $c_2$ for $p$+$p$.
We report a measurement of $e^+e^-$ pairs from semileptonic heavy-flavor decays in $p$+$p$ collisions at $\sqrt{s_{NN}}=200$~GeV. The $e^+e^-$ pair yield from $b\bar{b}$ and $c\bar{c}$ is separated by exploiting a double differential fit done simultaneously in dielectron invariant mass and $p_T$. We used three different event generators, {\sc pythia}, {\sc mc@nlo}, and {\sc powheg}, to simulate the $e^+e^-$ spectra from $c\bar{c}$ and $b\bar{b}$ production. The data can be well described by all three generators within the detector acceptance. However, when using the generators to extrapolate to $4\pi$, significant differences are observed for the total cross section. These difference are less pronounced for $b\bar{b}$ than for $c\bar{c}$. The same model dependence was observed in already published $d$+$A$ data. The $p$+$p$ data are also directly compared with $d$+$A$ data in mass and $p_T$, and within the statistical accuracy no nuclear modification is seen.
Step by step extrapolation from the number of $e^+e^-$ pairs for $m_{e^+e^-}$ > 1.16 GeV/$c^2$ from $c\bar{c}$ in the PHENIX acceptance to the number of $c\bar{c}$ pairs in 4$\pi$ for PYTHIA, MC@NLO, and POWHEG. Numbers are in units of pairs per event using the $c\bar{c}$ cross sections determined in this paper.
Step by step extrapolation from the number of $e^+e^-$ pairs for $m_{e^+e^-}$ > 1.16 GeV/$c^2$ from $b\bar{b}$ in the PHENIX acceptance to the number of $b\bar{b}$ pairs in 4$\pi$ for PYTHIA, MC@NLO, and POWHEG. Numbers are in units of pairs per event using the $b\bar{b}$ cross sections determined in this paper.
Summary of $c\bar{c}$ and $b\bar{b}$ cross sections measured in $p$+$p$ collisions using three different generators, PYTHIA, MC@NLO, and POWHEG.
We study the processes $\gamma \gamma \to K^0_S K^{\pm}\pi^{\mp}$ and $\gamma \gamma \to K^+ K^- \pi^0$ using a data sample of 519~$fb^{-1}$ recorded with the BaBar detector operating at the SLAC PEP-II asymmetric-energy $e^+ e^-$ collider at center-of-mass energies at and near the $\Upsilon(nS)$ ($n = 2,3,4$) resonances. We observe $\eta_c$ decays to both final states and perform Dalitz plot analyses using a model-independent partial wave analysis technique. This allows a model-independent measurement of the mass-dependence of the $I=1/2$ $K \pi$ $\mathcal{S}$-wave amplitude and phase. A comparison between the present measurement and those from previous experiments indicates similar behaviour for the phase up to a mass of 1.5 $GeV/c^2$. In contrast, the amplitudes show very marked differences. The data require the presence of a new $a_0(1950)$ resonance with parameters $m=1931 \pm 14 \pm 22 \ MeV/c^2$ and $\Gamma=271 \pm 22 \pm 29 \ MeV$.
Measured amplitude and phase values for the $I=1/2$ $K \pi$ $\mathcal{S}$-wave as functions of mass obtained from the Model Independent Partial Wave Analysis (MIPWA) of $\eta_c \to K^0_{\scriptscriptstyle S} K^{\pm}\pi^{\mp}$. The amplitudes and phases in the mass interval 14 are fixed to constant values.
Measured amplitude and phase values for the $I=1/2$ $K \pi$ $\mathcal{S}$-wave as functions of mass obtained from the Model Independent Partial Wave Analysis (MIPWA) of $\eta_c \to K^+ K^- \pi^0$. The amplitudes and phases in the mass interval 14 are fixed to constant values.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of $0.4<p_{T}<4.0$ GeV/$c$. At low $p_T$ the second-order coefficients, $v_2$, are similar to the ones observed in hadrons. Third order coefficients, $v_3$, are nonzero and almost independent of centrality. These new results on $v_2$ and $v_3$, combined with previously published results on yields, are compared to model calculations that provide yields and asymmetries in the same framework. Those models are challenged to explain simultaneously the observed large yield and large azimuthal anisotropies.
Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the conversion method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).
Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the calorimeter method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).
Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems.
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV
Measurements of the fractional momentum loss ($S_{\rm loss}\equiv{\delta}p_T/p_T$) of high-transverse-momentum-identified hadrons in heavy ion collisions are presented. Using $\pi^0$ in Au$+$Au and Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb$+$Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of $S_{\rm loss}$ as a function of a number of variables: the number of participants, $N_{\rm part}$, the number of quark participants, $N_{\rm qp}$, the charged-particle density, $dN_{\rm ch}/d\eta$, and the Bjorken energy density times the equilibration time, $\varepsilon_{\rm Bj}\tau_{0}$. We find that the $p_T$ where $S_{\rm loss}$ has its maximum, varies both with centrality and collision energy. Above the maximum, $S_{\rm loss}$ tends to follow a power-law function with all four scaling variables. The data at $\sqrt{s_{_{NN}}}$=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of $S_{\rm loss}$ with $dN_{\rm ch}/d\eta$ and $\varepsilon_{\rm Bj}\tau_{0}$, lending insight on the physics of parton energy loss.
Global variables for Au+Au collisions at RHIC from PHENIX.
Global variables for Au+Au collisions at RHIC from PHENIX.
Global variables for Cu+Cu collisions at RHIC from PHENIX.
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured $\phi$ meson production and its nuclear modification in asymmetric Cu$+$Au heavy-ion collisions at $\sqrt{s_{NN}}=200$ GeV at both forward Cu-going direction ($1.2<y<2.2$) and backward Au-going direction ($-2.2<y<-1.2$), rapidities. The measurements are performed via the dimuon decay channel and reported as a function of the number of participating nucleons, rapidity, and transverse momentum. In the most central events, 0\%--20\% centrality, the $\phi$ meson yield integrated over $1<p_T<5$ GeV/$c$ prefers a smaller value, which means a larger nuclear modification, in the Cu-going direction compared to the Au-going direction. Additionally, the nuclear-modification factor in Cu$+$Au collisions averaged over all centrality is measured to be similar to the previous PHENIX result in $d$$+$Au collisions for these rapidities.
Invariant yield as a function of the number of participating nucleons for 1.2 < $|y|$ < 2.2 and 1 < $p_T$ < 5 GeV/$c$. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.
Invariant yield as a function of transverse momentum for 1.2 < $|y|$ < 2.2 and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.
Invariant yield as a function of rapidity for 1 < $p_T$ < 5 GeV/$c$ and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.
$Au collisions at $\sqrt{s_{NN}}$=200 GeV recorded in 2008 with the PHENIX detector at the Relativistic Heavy Ion Collider. Jets are reconstructed using the $R=0.3$ anti-$k_{t}$ algorithm from energy deposits in the electromagnetic calorimeter and charged tracks in multi-wire proportional chambers, and the jet transverse momentum ($p_T$) spectra are corrected for the detector response. Spectra are reported for jets with $12<p_T<50$ GeV/$c$, within a pseudorapidity acceptance of $\left|\eta\right|<0.3$. The nuclear-modification factor ($R_{d{\rm Au}}$) values for 0\%--100\% $d $$Au events are found to be consistent with unity, constraining the role of initial state effects on jet production. However, the centrality-selected $R_{d{\rm Au}}$ values and central-to-peripheral ratios ($R_{\rm CP}$) show large, $p_T$-dependent deviations from unity, which challenge the conventional models that relate hard-process rates and soft-particle production in collisions involving nuclei. $Jet production rates are measured in $p $$ and $d
Measured anti-$k_T$, $R$ = 0.3 jet yields in $d$+Au collisions, and the measured and calculated jet cross section in $p$+$p$ collisions.
$R_{dAu}$ as a function of $p_T$.
$R_{CP}$ as a function of $p_T$.
None
No description provided.
No description provided.
No description provided.
We study the lepton forward-backward asymmetry AFB and the longitudinal K* polarization FL, as well as an observable P2 derived from them, in the rare decays B->K*l+l-, where l+l- is either e+e- or mu+mu-, using the full sample of 471 million BBbar events collected at the Upsilon(4S) resonance with the Babar detector at the PEP-II e+e- collider. We separately fit and report results for the B+->K*+l+l- and B0->K*0l+l- final states, as well as their combination B->K*l+l-, in five disjoint dilepton mass-squared bins. An angular analysis of B+->K*+l+l- decays is presented here for the first time.
$F_L$ angular fit results.
$A_{FB}$ angular fit results.
$P_2$ results with total uncertainties.