We present a study of the inclusive η production based on 300 000 hadronic Z 0 decays. The measured inclusive momentum distribution can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results with low energy e + e − data, we find that QCD describes both the shape and the energy evolution of the η spectrum. The comparison of η production rates in quark- and gluon-enriched jet samples does not show statistically significant evidence for more abundant production of η mesons in gluon fragmentation.
Differential cross section for inclusive eta production, normalized to the total hadronic cross section.
Differential cross section for inclusive eta production, normalized to the total hadronic cross section.
We present a study of the global event shape variables thrust and heavy jet mass, of energy-energy correlations and of jet multiplicities based on 250 000 hadronic Z 0 decays. The data are compared to new QCD calculations including resummation of leading and next-to-leading logarithms to all orders. We determine the strong coupling constant α s (91.2 GeV) = 0.125±0.003 (exp) ± 0.008 (theor). The first error is the experimental uncertainty. The second error is due to hadronization uncertainties and approximations in the calculations of the higher order corrections.
Measured EEC distribution corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.
Measured average jet multiplicities for the K_PT algorithm. All numbers are corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.
Value of strong coupling constant, alpha_s, determined from the data. First error is experimental, the second is theoretical.
The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.
Unfolded Thrust distribution. Statistical error includes statistical uncertainties of the data as well as of the unfolding Monte Carlo Sample. The systematic error combines the uncertainties of measurements and of the unfolding procedure.
Unfolded Major distribution where Major is defined in the same way as Thrust but is maximized in a plane perpendicular to the Thrust axis.
Unfolded Minor distribution where the minor axis is defined to give an orthonormal system.
The L3 detector at LEP has been used to determine the number of light neutrino families by measuring the cross section of single photon even in e + e − collisions at energies near the Z 0 resonance. We have observed 61 single photon candidates with more than 1.5 GeV of deposited energy in the barrel electromagnetic calorimeter, for a total integrated luminosity of 3.0 pb −1 . From a likelihood fir to the single photon cross sections, we determin N ν =3.24 ± 0.46 ( statistical ) ±0.22 ( systematic ).
Corrected single photon cross sections. Errors represent 68 pct CL intervals and take into account the background fluctuations.