A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 29 (2003) 285-312, 2003.
Inspire Record 620250 DOI 10.17182/hepdata.13029

Infrared and collinear safe event shape distributions and their mean values are determined in e+e- collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, alpha_s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta_0 = 7.86 +/- 0.32 for the one loop coefficient of the beta-function or, assuming QCD, n_f = 4.75 +/- 0.44 for the number of active flavours. These values agree well with the QCD expectation of beta_0=7.67 and n_f=5. A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5 GeV.

71 data tables

1-THRUST distribution.

THRUST-MAJOR distribution.

THRUST-MINOR distribution.

More…

Charged particle momentum spectra in e+ e- annihilation at s**(1/2) = 192-GeV - 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 27 (2003) 467-481, 2003.
Inspire Record 595335 DOI 10.17182/hepdata.48893

Charged particle momentum distributions are studied in the reaction e+e- -> hadrons, using data collected with the OPAL detector at centre-of-mass energies from 192 GeV to 209 GeV. The data correspond to an average centre-of- mass energy of 201.7 GeV and a total integrated luminosity of 433 pb-1. The measured distributions and derived quantities, in combination with corresponding results obtained at lower centre-of-mass energies, are compared to QCD predictions in various theoretical approaches to study the energy dependence of the strong interaction and to test QCD as the theory describing it. In general, a good agreement is found between the measurements and the corresponding QCD predictions.

5 data tables

The measured values of the PTIN distribution.

The measured values of the PTOUT distribution.

The measured values of the rapidity, YRAP, distribution.

More…

Determination of alpha(s) from hadronic event shapes in e+ e- annihilation at 192-GeV <= s**(1/2) <= 208-GeV

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 536 (2002) 217-228, 2002.
Inspire Record 586115 DOI 10.17182/hepdata.49741

Results are presented from a study of the structure of high energy hadronic events recorded by the L3 detector at sqrt(s)>192 GeV. The distributions of several event shape variables are compared to resummed O(alphaS^2) QCD calculations. We determine the strong coupling constant at three average centre-of-mass energies: 194.4, 200.2 and 206.2 GeV. These measurements, combined with previous L3 measurements at lower energies, demonstrate the running of alphaS as expected in QCD and yield alphaS(mZ) = 0.1227 +- 0.0012 +- 0.0058, where the first uncertainty is experimental and the second is theoretical.

9 data tables

The measured ALPHA_S at three centre-of-mass energies from fits to the individual event shape distributions. The first error is statistcal, the first DSYS error is the experimental systematic uncertainty, and the second DSYS error is the theoryuncertainty.

Updated ALPHA_S measurements from the BT, BW and C-Parameter distributions,from earlier L3 data at lower centre-of-mass energies.. The first error is the total experimental error (stat+sys in quadrature) and the DSYS error is the theory uncertainty.

Combined ALPHA_S values from the five event shape variables. The first error is statistical, the first DSYS error is the experimental systematic uncertainity, the second DSYS error is the uncertainty from the hadronisdation models, andthethird DSYS errpr is the uncertainty due to uncalculated higher orders in the QCDpredictions.

More…

Energy dependence of event shapes and of alpha(s) at LEP-2.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 456 (1999) 322-340, 1999.
Inspire Record 499183 DOI 10.17182/hepdata.49129

Infrared and collinear safe event shape distributions and their mean values are determined using the data taken at five different centre of mass energies above M Z with the DELPHI detector at LEP. From the event shapes, the strong coupling α s is extracted in O ( α s 2 ), NLLA and a combined scheme using hadronisation corrections evaluated with fragmentation model generators as well as using an analytical power ansatz. Comparing these measurements to those obtained at M Z , the energy dependence (running) of α s is accessible. The logarithmic energy slope of the inverse strong coupling is measured to be d α −1 s d log (E cm ) =1.39±0.34( stat )±0.17( syst ) , in good agreement with the QCD expectation of 1.27.

47 data tables

Moments of the (1-THRUST) distributions at cm energies 133, 161, 172 and 183 GeV.

Moments of the Thrust Major distributions at cm energies 133, 161, 172 and 183 GeV.

Moments of the Thrust Minor distributions at cm energies 133, 161, 172 and 183 GeV.

More…

Measurement and interpretation of fermion-pair production at LEP energies above the Z resonance.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 45 (2006) 589-632, 2006.
Inspire Record 699726 DOI 10.17182/hepdata.48590

This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.

29 data tables

Measured cross sections and forward-backward asymmetries for non-radiative E+ E- --> E+ E- events.

Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 189 GeV.

Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 192 GeV.

More…

Measurement of event shape and inclusive distributions at s**(1/2) = 130-GeV and 136-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1997) 229-242, 1997.
Inspire Record 424629 DOI 10.17182/hepdata.47715

Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine αs from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: $$←pha _s(133 {⤪ GeV})={0.116}pm {0.007}_{exp-0.004theo}^{+0.005}$$ from the high energy data.

26 data tables

mean values for event shape variables.

Integral of event shape distribution over the specified interval.

Integral of event shape distribution over the specified interval.

More…

Measurement of event shape distributions and moments in e+ e- --> hadrons at 91-GeV - 209-GeV and a determination of alpha(s).

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 40 (2005) 287-316, 2005.
Inspire Record 669402 DOI 10.17182/hepdata.48652

We have studied hadronic events from e+e- annihilation data at centre-of-mass energies from 91 to 209 GeV. We present distributions of event shape observables and their moments at each energy and compare with QCD Monte Carlo models. From the event shape distributions we extract the strong coupling alpha_s and test its evolution with energy scale. The results are consistent with the running of alpha_s expected from QCD. Combining all data, the value of alpha_s(M_Z) is determined to be alpha_s(M_Z) = 0.1191 +- 0.0005 (stat.) +- 0.0010 (expt.) +- 0.0011 (hadr.) +- 0.0044 (theo.). The energy evolution of the moments is also used to determine a value of alpha_s with slightly larger errors: alpha_s(M_Z) = 0.1223 +- 0.0005 (stat.) +- 0.0014 (expt.) +- 0.0016 (hadr.) +0.0054 -0.0036 (theo.).

27 data tables

Measured normalized differential distribution for 1-THRUST.

Measured normalized differential distribution for HEAVY-JET-MASS.

Measured normalized differential distribution for C-PARAMETER.

More…

Measurement of hadron and lepton pair production at 130-GeV less than S**(1/2) less than 189-GeV at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 479 (2000) 101-117, 2000.
Inspire Record 513676 DOI 10.17182/hepdata.48958

We report on measurements of e+e- annihilation into hadrons and lepton pairs. The data have been collected with the L3 detector at LEP at centre-of-mass energies between 130 and 189 GeV. Using a total integrated luminosity of 243.7 pb^-1, 25864 hadronic and 8573 lepton-pair events are selected for the measurement of cross sections and leptonic forward-backward asymmetries. The results are in good agreement with Standard Model predictions.

10 data tables

Measured cross sections for the hadronic events.

Measured cross sections for the muon-pair events.

Measured cross sections for the tau-pair events.

More…

Measurement of hadron and lepton pair production from e+ e- annihilation at center-of-mass energies of 130-GeV and 136-GeV

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Phys.Lett.B 378 (1996) 373-384, 1996.
Inspire Record 421552 DOI 10.17182/hepdata.47801

Hadronic and leptonic cross-sections and forward-backward asymmetries are measured using 5.7 pb −1 of data taken with the ALEPH detector at LEP at centre-of-mass energies of 130 and 136 GeV. The results agree with Standard Model expectations. The measurement of hadronic cross-sections far away from the Z resonance improves the determination of the interference between photon and Z exchange. Constraints on models with extra Z bosons are presented.

12 data tables

Data with loose SPRIME cut.

Data with tight SPRIME cut.

Data with loose SPRIME cut.

More…

Measurement of hadron and lepton-pair production in e+ e- collisions at s**(1/2) = 192-GeV - 208-GeV at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Eur.Phys.J.C 47 (2006) 1-19, 2006.
Inspire Record 704275 DOI 10.17182/hepdata.48637

Hadron production and lepton-pair production in e+e- collisions are studied with data collected with the L3 detector at LEP at centre-of-mass energies sqrt{s}=192-208GeV. Using a total integrated luminosity of 453/pb, 36057 hadronic events and 12863 lepton-pair events are selected. The cross sections for hadron production and lepton-pair production are measured for the full sample and for events where no high-energy initial-state-radiation photon is emitted prior to the collisions. Lepton-pair events are further investigated and forward-backward asymmetries are measured. Finally, the differential cross sections for electron-positron pair-production is determined as a function of the scattering angle. An overall good agreement is found with Standard Model predictions.

21 data tables

Measured hadron cross section for the inclusive data sample.

Measured hadron cross section for the high-energy data sample.

Measured MU+ MU- cross section for the inclusive data sample.

More…