Searches for Higgs boson production through decays of heavy resonances

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-23-002, 2024.
Inspire Record 2771692 DOI 10.17182/hepdata.146897

The discovery of the Higgs boson has led to new possible signatures for heavy resonance searches at the LHC. Since then, search channels including at least one Higgs boson plus another particle have formed an important part of the program of new physics searches. In this report, the status of these searches by the CMS Collaboration is reviewed. Searches are discussed for resonances decaying to two Higgs bosons, a Higgs and a vector boson, or a Higgs boson and another new resonance, with proton-proton collision data collected at $\sqrt{s}$ = 13 TeV in the years 2016-2018. A combination of the results of these searches is presented together with constraints on different beyond-the-standard model scenarios, including scenarios with extended Higgs sectors, heavy vector bosons and extra dimensions. Studies are shown for the first time by CMS on the validity of the narrow-width approximation in searches for the resonant production of a pair of Higgs bosons. The potential for a discovery at the High Luminosity LHC is also discussed.

6 data tables

Upper limits on σB for a spin-0 resonance X obtained from the combination of the individual channels. The 68 and 95% CL intervals on the expected upper limits are shown as colored bands.

Upper limits on σB for a spin-2 resonance G obtained from the combination of the individual channels. The 68 and 95% CL intervals on the expected upper limits are shown as colored bands.

Upper limits at 95% CL on $\sigma$B(pp→X→Y(bb)H) for combination as a function of m$_Y$.

More…

Observation of the J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-006, 2024.
Inspire Record 2769595 DOI 10.17182/hepdata.147273

The J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb${-1}$. Normalizing to the J/$\psi$$\to$$\mu^+\mu^-$ decay mode leads to a branching fraction [10.1$^{+3.3}_{-2.7}$ (stat) $\pm$ 0.4 (syst) ]$\times$ 10$^{-7}$, a value that is consistent with the standard model prediction.

2 data tables

$\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu$ branching fraction

$\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu)$ / $\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu)$ ratio


Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-18-026, 2024.
Inspire Record 2769284 DOI 10.17182/hepdata.147309

A search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, H $\to$ aa $\to$$\mathrm{b\bar{b}b\bar{b}}$. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 $\lt$$m_\mathrm{a}$$\lt$ 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp $\to$ WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction $\mathcal{B}$(H $\to$ aa $\to$ $\mathrm{b\bar{b}b\bar{b}}$). The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for $m_\mathrm{a} =$ 20 GeV to 0.36 for $m_\mathrm{a} =$ 60 GeV, complementing other measurements in the $\mu\mu\tau\tau$, $\tau\tau\tau\tau$ and bb$\ell\ell$ ($\ell=$ $\mu$,$\tau$) channels.

6 data tables

Post-fit BDT distributions in the WH channel extracted with the ma = 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines WH20 GeV, WH60 GeV, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction B(H → aa → bbbb) = 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

Post-fit BDT distributions in the ZH channel extracted with the ma = 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines ZH20 GeV and ZH60 GeV, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction B(H → aa → bbbb) = 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

Model independent 95% CL upper limits on σ(VH) B(H → aa → bbbb)/σ(SM) for the WH channel (upper), the ZH channel (middle), and the combination of both channels (lower), where “a” is a new pseudoscalar particle decaying through a → bb, and σ(SM) is the SM Higgs boson production cross section.

More…

Search for Higgs boson pair production in the bbWW decay mode in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-21-005, 2024.
Inspire Record 2768920 DOI 10.17182/hepdata.149576

A search for Higgs boson pair (HH) production with one Higgs boson decaying to two bottom quarks and the other to two W bosons are presented. The search is done using proton-proton collisions data at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded by the CMS detector at the LHC from 2016 to 2018. The final states considered include at least one leptonically decaying W boson. No evidence for the presence of a signal is observed and corresponding upper limits on the HH production cross section are derived. The limit on the inclusive cross section of the nonresonant HH production, assuming that the distributions of kinematic observables are as expected in the standard model (SM), is observed (expected) to be 14 (18) times the value predicted by the SM, at 95% confidence level. The limits on the cross section are also presented as functions of various Higgs boson coupling modifiers, and anomalous Higgs boson coupling scenarios. In addition, limits are set on the resonant HH production via spin-0 and spin-2 resonances within the mass range 250-900 GeV.

8 data tables

Observed and expected 95% CL upper limits on the production of new particles X of spin-2 and mass $m_X$ in the range 250 $\leq m_X \leq$ 900 GeV, which decay to Higgs boson pairs.

Observed and expected 95% CL upper limits on the production of new particles X of spin-0 and mass $m_X$ in the range 250 $\leq m_X \leq$ 900 GeV, which decay to Higgs boson pairs.

Observed and expected 95% CL upper limits on the inclusive nonresonant HH production cross section obtained for both single-lepton and dilepton channels, and from their combination

More…

Search for long-lived heavy neutrinos in the decays of B mesons produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-22-019, 2024.
Inspire Record 2766369 DOI 10.17182/hepdata.147308

A search for long-lived heavy neutrinos (N) in the decays of \PB mesons produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV is presented. The data sample corresponds to an integrated luminosity of 41.6 fb$^{-1}$ collected in 2018 by the CMS experiment at the CERN LHC, using a dedicated data stream that enhances the number of recorded events containing B mesons. The search probes heavy neutrinos with masses in the range 1 $\lt$$m_\mathrm{N}$$\lt$ 3 GeV and decay lengths in the range 10$^{-2}$$\lt$$c\tau$$\lt$ 10$^{4}$ mm, where $\tau_\mathrm{N}$ is the N proper mean lifetime. Signal events are defined by the signature B $\to$$\ell_\mathrm{B}$NX; N $\to$$\ell^{\pm} \pi^{\mp}$, where the leptons $\ell_\mathrm{B}$ and $\ell$ can be either a muon or an electron, provided that at least one of them is a muon. The hadronic recoil system, X, is treated inclusively and is not reconstructed. No significant excess of events over the standard model background is observed in any of the $\ell^{\pm}\pi^{\mp}$ invariant mass distributions. Limits at 95% confidence level on the sum of the squares of the mixing amplitudes between heavy and light neutrinos, $\vert V_\mathrm{N}\vert^2$, and on $c\tau$ are obtained in different mixing scenarios for both Majorana and Dirac-like N particles. The most stringent upper limit $\vert V_\mathrm{N}\vert^2$ $\lt$ 2.0$\times$10$^{-5}$ is obtained at $m_\mathrm{N}$ = 1.95 GeV for the Majorana case where N mixes exclusively with muon neutrinos. The limits on $\vert V_\mathrm{N}\vert^2$ for masses 1 $\lt$ $m_\mathrm{N}$ $\lt$ 1.7 GeV are the most stringent from a collider experiment to date.

14 data tables

Expected and observed 95% CL upper limits on $|V_\mathrm{N}|^2$ as a function of $m_\mathrm{N}$ for the mixing scenario ($r_e$, $r_\mu$, $r_\tau$) = (0.0, 1.0, 0.0) and in the Majorana scenario.

Expected and observed 95% CL upper limits on $|V_\mathrm{N}|^2$ as a function of $m_\mathrm{N}$ for the mixing scenario ($r_e$, $r_\mu$, $r_\tau$) = (0.0, 0.5, 0.5) and in the Majorana scenario.

Expected and observed 95% CL upper limits on $|V_\mathrm{N}|^2$ as a function of $m_\mathrm{N}$ for the mixing scenario ($r_e$, $r_\mu$, $r_\tau$) = (0.5, 0.5, 0.0) and in the Majorana scenario.

More…

Search for baryon number violation in top quark production and decay using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-TOP-22-003, 2024.
Inspire Record 2762774 DOI 10.17182/hepdata.138414

A search is presented for baryon number violating interactions in top quark production and decay. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC with an integrated luminosity of 138 fb$^{-1}$. Candidate events are selected by requiring two oppositely-charged leptons (electrons or muons) and exactly one jet identified as originating from a bottom quark. Multivariate discriminants are used to separate the signal from the background. No significant deviation from the standard model prediction is observed. Upper limits are placed on the strength of baryon number violating couplings. For the first time the production of single top quarks via baryon number violating interactions is studied. This allows the search to set the most stringent constraints to date on the branching fraction of the top quark decay to a lepton, an up-type quark (u or c), and a down-type quark (d, s, or b). The results improve the previous bounds by three to six orders of magnitude based on the fermion flavor combination of the baryon number violating interactions.

1 data table

The observed upper limits on the branching fractions of the top quark BNV decays are shown with circle and triangle shapes for electron and muon couplings, respectively. The observed limits corresponding to the $C_t$ and $C_s$ coefficients are shown with filled and open markers, respectively. The yellow light (green dark) bands indicate the range within plus or minus one (two) standard deviations bands around the expected limits.


Observation of the $\Xi^-_\mathrm{b}$$\to$$\psi$(2S)$\Xi^-$ decay and studies of the $\Xi_\mathrm{b}^{\ast{}0}$ baryon in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-23-002, 2024.
Inspire Record 2762139 DOI 10.17182/hepdata.146756

The first observation of the decay $\Xi^-_\mathrm{b}$$\to$$\psi$(2S)$\Xi^-$ and measurement of the branching ratio of $\Xi^-_\mathrm{b}$$\to$$\psi$(2S)$\Xi^-$ to $\Xi^-_\mathrm{b}$$\to$ J/$\psi$$\Xi^-$ are presented. The J/$\psi$ and $\psi$(2S) mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016-2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. The branching fraction ratio is measured to be $\mathcal{B}$($\Xi^-_\mathrm{b}$$\to$$\psi$(2S)$\Xi^-$)/$\mathcal{B}$($\Xi^-_\mathrm{b}$$\to$ J/$\psi$$\Xi^-$) = 0.84$^{+0.21}_{-0.19}$ (stat) $\pm$ 0.10 (syst) $\pm$ 0.02 ($\mathcal{B}$), where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the $\Xi_\mathrm{b}^{\ast{}0}$ baryon mass and natural width are also presented, using the $\Xi_\mathrm{b}^-\pi^+$ final state, where the $\Xi^-_\mathrm{b}$ baryon is reconstructed through the decays J/$\psi \Xi^-$, $\psi$(2S)$\Xi^-$, J/$\psi \Lambda$K$^-$, and J/$\psi \Sigma^0$K$^-$. Finally, the fraction of the $\Xi^-_\mathrm{b}$ baryons produced from $\Xi_\mathrm{b}^{\ast{}0}$ decays is determined.

5 data tables

The measured ratio of branching fractions

More…

Search for long-lived particles using displaced vertices and missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-22-020, 2024.
Inspire Record 2761908 DOI 10.17182/hepdata.147272

A search for the production of long-lived particles in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC is presented. The search is based on data collected by the CMS experiment in 2016-2018, corresponding to a total integrated luminosity of 137 fb$^{-1}$. This search is designed to be sensitive to long-lived particles with mean proper decay lengths between 0.1 and 1000 $\mu$m, whose decay products produce a final state with at least one displaced vertex and missing transverse momentum. A machine learning algorithm, which improves the background rejection power by more than an order of magnitude, is applied to improve the sensitivity. The observation is consistent with the standard model background prediction, and the results are used to constrain split supersymmetry (SUSY) and gauge-mediated SUSY breaking models with different gluino mean proper decay lengths and masses. This search is the first CMS search that shows sensitivity to hadronically decaying long-lived particles from signals with mass differences between the gluino and neutralino below 100 GeV. It sets the most stringent limits to date for split-SUSY models and gauge-mediated SUSY breaking models with gluino proper decay length less than 6 $\mu$m.

17 data tables

Distributions of $S_{\mathrm{ML}}$ for data, simulated background and signal events with $n_{\mathrm{track}}$ of 3. The distributions are shown for split-SUSY signals with a gluino mass of 2000 GeV and neutralino mass of 1900 GeV. Different gluino proper decay lengths are shown as $c\tau$ in the legend. All distributions are normalized to unity.

Distributions of $S_{\mathrm{ML}}$ for data, simulated background and signal events with $n_{\mathrm{track}}$ of 3. The distributions are shown for split-SUSY signals with a gluino mass of 2000 GeV and neutralino mass of 1800 GeV. Different gluino proper decay lengths are shown as $c\tau$ in the legend. All distributions are normalized to unity.

Distributions of $S_{\mathrm{ML}}$ for data, simulated background and signal events with $n_{\mathrm{track}}$ of 4. The distributions are shown for split-SUSY signals with a gluino mass of 2000 GeV and neutralino mass of 1900 GeV. Different gluino proper decay lengths are shown as $c\tau$ in the legend. All distributions are normalized to unity.

More…

Search for a new $Z'$ gauge boson via the $pp \rightarrow W^{\pm(*)} \rightarrow Z' \mu^{\pm} \nu \rightarrow \mu^{\pm}\mu^{\mp}\mu^{\pm}\nu$ process in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-042, 2024.
Inspire Record 2761384 DOI 10.17182/hepdata.149991

A search for a new $Z'$ gauge boson predicted by $L_{\mu}-L_{\tau}$ models, based on charged-current Drell-Yan production, $pp \rightarrow W^{\pm(*)} \rightarrow Z' \mu^{\pm} \nu \rightarrow \mu^{\pm}\mu^{\mp}\mu^{\pm}\nu$, is presented. The data sample used corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. The search examines a final state of $3\mu$ plus large missing transverse momentum. Upper limits are set on the $Z'$ production cross-section times branching ratio in the mass range of 5-81 GeV. After combining with the previous $Z'$ search using the neutral-current Drell-Yan production with a $4\mu$ final state, the most stringent exclusion limits to date are achieved in the parameter space of the $Z'$ coupling strength and mass.

4 data tables

Observed and expected upper limits at 95% CL on the production cross-section times branching fraction of the process $pp\to W\to Z^{\prime}$ $\mu \nu \to \mu \mu \mu \nu$ as a function of $m_{Z^{\prime}}$.

Observed and expected upper limits at 95% CL on the coupling parameter $g_{Z^{\prime}}$ as a function of $m_{Z^{\prime}}$ from the statistical combination of the $3\mu$ and $4\mu$ channels.

Exclusion contour compared to the limits from the Neutrino Trident and the $B_{S}$ mixing experimental results.

More…

Search for long-lived particles decaying to final states with a pair of muons in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-23-014, 2024.
Inspire Record 2760892 DOI 10.17182/hepdata.146759

An inclusive search for long-lived exotic particles (LLPs) decaying to final states with a pair of muons is presented. The search uses data corresponding to an integrated luminosity of 36.6 fb$^{-1}$ collected by the CMS experiment from the proton-proton collisions at $\sqrt{s}$ = 13.6 TeV in 2022, the first year of Run 3 of the CERN LHC. The experimental signature is a pair of oppositely charged muons originating from a common vertex spatially separated from the proton-proton interaction point by distances ranging from several hundred $\mu$m to several meters. The sensitivity of the search benefits from new triggers for displaced dimuons developed for Run 3. The results are interpreted in the framework of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons, and of an $R$-parity violating supersymmetry model, in which long-lived neutralinos decay to a pair of muons and a neutrino. The limits set on these models are the most stringent to date in wide regions of lifetimes for LLPs with masses larger than 10 GeV.

30 data tables

Efficiencies of the Run 2 and Run 3 displaced dimuon triggers as a function of $c\tau$ for the HAHM signal events with $m_{Z_D} = 20\ GeV$. The efficiency is defined as the fraction of simulated events that satisfy the requirements of the following sets of trigger paths: the Run 2 (2018) triggers (dashed black); the Run 3 (2022, L3) triggers (blue); the Run 3 (2022, L2) triggers (red); and the OR of all these triggers (Run 3 (2022), black). The lower panel shows the ratio of the overall Run 3 (2022) efficiency to the Run 2 (2018) efficiency.

Efficiencies in the STA-STA (green) and TMS-TMS (red) dimuon categories, as well as their combination (black) as a function of $c\tau$ for the HAHM signal events with $m_{Z_D} = 20\ GeV$. Solid curves show efficiencies achieved with the Run 3 triggers, whereas dashed curves show efficiencies for the subset of events selected by the triggers used in the 2018 Run 2 analysis. The efficiency is defined as the fraction of signal events that satisfy the criteria of the indicated trigger as well as the full set of offline selection criteria. The lower panel shows the relative improvement of the overall signal efficiency brought in by improvements in the trigger.

Comparison of the observed (black points) and expected (histograms) numbers of events in nonoverlapping $m_{\mu \mu}$ intervals in the STA-STA dimuon category, in the signal region optimized for the HAHM model. Yellow and green stacked histograms represent mean expected background contributions from QCD and DY, respectively, while statistical uncertainties in the total expected background are shown as hatched histograms. Signal contributions expected from simulated signals indicated in the legends are shown in red and blue. Their yields are set to the corresponding median expected 95% CL exclusion limits obtained from the ensemble of both dimuon categories, scaled up as indicated in the legend to improve visibility. The last bin includes events in the histogram overflow. All uncertainties shown are statistical only.

More…