Showing 4 of 494 results
Two-particle pseudorapidity correlations are measured in $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV Pb+Pb, $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV $p$+Pb, and $\sqrt{s}$ = 13 TeV $pp$ collisions at the LHC, with total integrated luminosities of approximately 7 $\mu\mathrm{b}^{-1}$, 28 $\mathrm{nb}^{-1}$, and 65 $\mathrm{nb}^{-1}$, respectively. The correlation function $C_{\rm N}(\eta_1,\eta_2)$ is measured as a function of event multiplicity using charged particles in the pseudorapidity range $|\eta|<2.4$. The correlation function contains a significant short-range component, which is estimated and subtracted. After removal of the short-range component, the shape of the correlation function is described approximately by $1+\langle{a_1^2}\rangle \eta_1\eta_2$ in all collision systems over the full multiplicity range. The values of $\sqrt{\langle{a_1^2}\rangle}$ are consistent between the opposite-charge pairs and same-charge pairs, and for the three collision systems at similar multiplicity. The values of $\sqrt{\langle{a_1^2}\rangle}$ and the magnitude of the short-range component both follow a power-law dependence on the event multiplicity. The $\eta$ distribution of the short-range component, after symmetrizing the proton and lead directions in $p$+Pb collisions, is found to be smaller than that in $pp$ collisions with comparable multiplicity.
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (260<=Nch<300)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (260<=Nch<300)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (240<=Nch<260)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (240<=Nch<260)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (220<=Nch<240)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (220<=Nch<240)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (200<=Nch<220)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (200<=Nch<220)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (180<=Nch<200)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (180<=Nch<200)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (160<=Nch<180)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (160<=Nch<180)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (260<=Nch<300)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (260<=Nch<300)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (240<=Nch<260)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (240<=Nch<260)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (220<=Nch<240)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (220<=Nch<240)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (200<=Nch<220)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (200<=Nch<220)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (180<=Nch<200)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (180<=Nch<200)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (160<=Nch<180)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (160<=Nch<180)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (260<=Nch<300)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (260<=Nch<300)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (240<=Nch<260)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (240<=Nch<260)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (220<=Nch<240)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (220<=Nch<240)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (200<=Nch<220)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (200<=Nch<220)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (180<=Nch<200)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (180<=Nch<200)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (160<=Nch<180)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (160<=Nch<180)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (260<=Nch<300)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (260<=Nch<300)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (240<=Nch<260)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (240<=Nch<260)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (220<=Nch<240)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (220<=Nch<240)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (200<=Nch<220)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (200<=Nch<220)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (180<=Nch<200)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (180<=Nch<200)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (160<=Nch<180)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (160<=Nch<180)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (260<=Nch<300)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (260<=Nch<300)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (240<=Nch<260)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (240<=Nch<260)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (220<=Nch<240)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (220<=Nch<240)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (200<=Nch<220)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (200<=Nch<220)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (180<=Nch<200)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (180<=Nch<200)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (160<=Nch<180)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (160<=Nch<180)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (260<=Nch<300)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (260<=Nch<300)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (240<=Nch<260)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (240<=Nch<260)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (220<=Nch<240)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (220<=Nch<240)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (200<=Nch<220)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (200<=Nch<220)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (180<=Nch<200)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (180<=Nch<200)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (160<=Nch<180)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (160<=Nch<180)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (10<=Nch<20)
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, wo SRC, all pairs
a1 from fit C_N^sub(eta-) for Pb+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta-) for Pb+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta+) for Pb+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta+) for Pb+Pb, pT>0.2GeV
a1 from fit r_N^sub(eta) for Pb+Pb, pT>0.5GeV
a1 from fit r_N^sub(eta) for Pb+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta1, eta2) for Pb+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta1, eta2) for Pb+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta-) for p+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta-) for p+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta+) for p+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta+) for p+Pb, pT>0.2GeV
a1 from fit r_N^sub(eta) for p+Pb, pT>0.5GeV
a1 from fit r_N^sub(eta) for p+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta1, eta2) for p+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta1, eta2) for p+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta-) for pp, pT>0.5GeV
a1 from fit C_N^sub(eta-) for pp, pT>0.2GeV
a1 from fit C_N^sub(eta+) for pp, pT>0.5GeV
a1 from fit C_N^sub(eta+) for pp, pT>0.2GeV
a1 from fit r_N^sub(eta) for pp, pT>0.5GeV
a1 from fit r_N^sub(eta) for pp, pT>0.2GeV
a1 from fit C_N^sub(eta1, eta2) for pp, pT>0.5GeV
a1 from fit C_N^sub(eta1, eta2) for pp, pT>0.2GeV
SRC for Pb+Pb, pT>0.5GeV, all pairs
SRC for Pb+Pb, pT>0.2GeV, all pairs
SRC for Pb+Pb, pT>0.5GeV, opposite pairs
SRC for Pb+Pb, pT>0.2GeV, opposite pairs
SRC for Pb+Pb, pT>0.5GeV, same pairs
SRC for Pb+Pb, pT>0.2GeV, same pairs
SRC for p+Pb, pT>0.5GeV, all pairs
SRC for p+Pb, pT>0.2GeV, all pairs
SRC for p+Pb, pT>0.5GeV, opposite pairs
SRC for p+Pb, pT>0.2GeV, opposite pairs
SRC for p+Pb, pT>0.5GeV, same pairs
SRC for p+Pb, pT>0.2GeV, same pairs
SRC for pp, pT>0.5GeV, all pairs
SRC for pp, pT>0.2GeV, all pairs
SRC for pp, pT>0.5GeV, opposite pairs
SRC for pp, pT>0.2GeV, opposite pairs
SRC for pp, pT>0.5GeV, same pairs
SRC for pp, pT>0.2GeV, same pairs
SRC for Pb+Pb, pT>0.5GeV
SRC for Pb+Pb, pT>0.2GeV
SRC for p+Pb, pT>0.5GeV
SRC for p+Pb, pT>0.2GeV
SRC for pp, pT>0.5GeV
SRC for pp, pT>0.2GeV
a1 for Pb+Pb, pT>0.5GeV
a1 for Pb+Pb, pT>0.2GeV
a1 for p+Pb, pT>0.5GeV
a1 for p+Pb, pT>0.2GeV
a1 for pp, pT>0.5GeV
a1 for pp, pT>0.2GeV
f(eta+) for p+Pb
f(eta+) for symmetrized p+Pb
f(eta+) for pp
f(eta+) for Pb+Pb
A search for heavy long-lived charged $R$-hadrons is reported using a data sample corresponding to 3.2$^{-1}$ of proton--proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived $R$-hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.
Distributions of beta for data and simulation after a Zmumu selection. The values given for the mean and width are taken from Gaussian functions matched to data and simulation.
Data (black dots) and background estimates (red solid line) for m_beta for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.
Data (black dots) and background estimates (red solid line) for m_betagamma for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.
Data (bold boxes) and background estimates (colour fill) for m_beta vs. m_betagamma for the gluino R-hadron search (1000 GeV). The blue thin-line boxes illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical/horizontal lines at 500 GeV show the mass selection (signal region in the top-right). Two events pass this selection.
Expected (dashed black line) and observed (solid red line) 95% CL upper limits on the cross section as a function of mass for the production of long-lived gluino R-hadrons. The theory prediction along with its +-1sigma uncertainty is show as a black line and a blue band, respectively. The observed 8 TeV Run-1 limit and theory prediction [arXiv:1411.6795] are shown in dash-dotted and dotted lines, respectively.
Expected (dashed black line) and observed (solid red line) 95% CL upper limits on the cross section as a function of mass for the production of bottom-squark R-hadrons. The theory prediction along with its +-1sigma uncertainty is show as a black line and a blue band, respectively. The observed 8 TeV Run-1 limit and theory prediction [arXiv:1411.6795] are shown in dash-dotted and dotted lines, respectively.
Expected (dashed black line) and observed (solid red line) 95% CL upper limits on the cross section as a function of mass for the production of top-squark R-hadrons. The theory prediction along with its +-1sigma uncertainty is show as a black line and a blue band, respectively. The observed 8 TeV Run-1 limit and theory prediction [arXiv:1411.6795] are shown in dash-dotted and dotted lines, respectively.
Final selection requirements as a function of the simulated R-hadron mass.
Summary of all studied systematic uncertainties. Ranges indicate a dependency on the R-hadron mass hypothesis (from low to high masses).
Expected signal yield (Nsig) and efficiency (eff.), estimated background (Nbkg) and observed number of events in data (Nobs) for the full mass range after the final selection using 3.2/fb of data. The stated uncertainties include both the statistical and systematic contribution.
Distribution of the truth-level beta for gluino R-hadrons in exemplary signal MC samples and muons in a Zmumu MC sample. All distributions have been normalised to one. The last bin contains the overflow of the histograms. The distributions illustrate the good discriminating power of the variables.
Distribution of the truth-level betagamma for gluino R-hadrons in exemplary signal MC samples and muons in a Zmumu MC sample. All distributions have been normalised to one. The last bin contains the overflow of the histograms. The distributions illustrate the good discriminating power of the variables.
Expected (dashed black line) and observed (solid red line) 95% confidence level upper limits on the cross section as a function of mass for the production of long-lived gluino R-hadrons. The theory prediction along with its +-1sigma uncertainty is show as a black line and a blue band, respectively. For meta-stable gluinos with a lifetime of 50 ns. (mass exclusion: about 1660 GeV expected, 1520 GeV observed).
Expected (dashed black line) and observed (solid red line) 95% confidence level upper limits on the cross section as a function of mass for the production of long-lived gluino R-hadrons. The theory prediction along with its +-1sigma uncertainty is show as a black line and a blue band, respectively. For meta-stable gluinos with a lifetime of 30 ns. (mass exclusion: about 1660 GeV expected, 1520 GeV observed).
Expected (dashed black line) and observed (solid red line) 95% confidence level upper limits on the cross section as a function of mass for the production of long-lived gluino R-hadrons. The theory prediction along with its +-1sigma uncertainty is show as a black line and a blue band, respectively. For meta-stable gluinos with a lifetime of 10 ns. (mass exclusion: about 1660 GeV expected, 1520 GeV observed).
Object-quality selection cut-flow with observed data and exemplary expected events (scaled to 3.2/fb for MC) in the gluino R-hadron search.
Object-quality selection cut-flow with observed data and exemplary expected events (scaled to 3.2/fb for MC) in the squark R-hadron search.
Expected signal yield (Nsig) and efficiency (eff.), estimated background (Nbkg) and observed number of events in data (Nobs) for the full mass range in the meta-stable gluino R-hadron search using 3.2/fb of data. The stated uncertainties include both the statistical and systematic contribution.
This Letter presents a measurement of the inelastic proton-proton cross section using 60 $\mu$b$^{-1}$ of $pp$ collisions at a center-of-mass energy $\sqrt{s}$ of $13$ TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region ($2.07<|\eta|<3.86$) of the detector. A cross section of $68.1\pm 1.4$ mb is measured in the fiducial region $\xi=M_X^2/s>10^{-6}$, where $M_X$ is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this $\xi$ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with $M_X>13$ GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross-section of $78.1 \pm 2.9$ mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.
The measured and extrapolated inelastic cross section. The statistical uncertainty is negligible and is therefore displayed as zero. The first systematic uncertainty is the experimental systematic uncertainty apart from the luminosity, the second is the luminosity uncertainty, and the third is the extrapolation uncertainty.
Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.
Best fit values of $\sigma_i \cdot \mathrm{B}^f$ for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.
Best fit values of $\sigma_i \cdot \mathrm{B}^f$ relative to their SM prediction for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.
Best fit values of $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$ from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The values involving cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.
Best fit values of $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$ relative to their SM prediction from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.
Best fit values of $\sigma(gg\to H\to WW)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{WW}$ from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The values involving cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.
Best fit values of $\sigma(gg\to H\to WW)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{WW}$ relative to their SM prediction from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.
Best fit values of $\kappa_{gZ}= \kappa_{g}\cdot\kappa_{Z} / \kappa_{H}$ and of the ratios of coupling modifiers, as defined in the most generic parameterisation described in the context of the $\kappa$ framework, from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The results are shown for the combination of ATLAS and CMS and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The uncertainties in $\lambda_{tg}$ and $\lambda_{WZ}$, for which a negative solution is allowed, are calculated around the overall best fit value. The expected total uncertainties in the measurements are also shown. For those parameters with no sensitivity to the sign, only the absolute values are shown.
Measured global signal strength $\mu$ and its total uncertainty, together with the breakdown of the uncertainty into its four components as defined in the text. The results are shown for the combination of ATLAS and CMS, and separately for each experiment. The expected uncertainty, with its breakdown, is also shown.
Measured signal strengths $\mu$ and their total uncertainties for different Higgs boson production processes. The results are shown for the combination of ATLAS and CMS, and separately for each experiment, for the combined $\sqrt{s}$=7 and 8 TeV data. The expected uncertainties in the measurements are also displayed. These results are obtained assuming that the Higgs boson branching fractions are the same as in the SM.
Measured signal strengths $\mu$ and their total uncertainties for different Higgs boson decay channels. The results are shown for the combination of ATLAS and CMS, and separately for each experiment, for the combined $\sqrt{s}$=7 and 8 TeV data. The expected uncertainties in the measurements are also displayed. These results are obtained assuming that the Higgs boson production process cross sections at $\sqrt{s}$ = 7 and 8 TeV are the same as in the SM.
Results of the ten-parameter fit of $\mu_F^f = \mu_{gg\mathrm{F}+ttH}^f$ and $\mu_V^f = \mu_{\mathrm{VBF}+VH}^f$ for each of the five decay channels. The results are shown for the combination of ATLAS and CMS, together with their measured and expected uncertainties. The measured results are also shown separately for each experiment.
Results of the six-parameter fit of the global ratio $\mu_V/\mu_F = \mu_{\mathrm{VBF}+VH}/\mu_{gg\mathrm{F}+ttH}$ together with $\mu_F^f$ for each of the five decay channels. The results are shown for the combination of ATLAS and CMS, together with their measured and expected uncertainties. The measured results are also shown separately for each experiment.
Fit results allowing BSM loop couplings, assuming that $|\kappa_{V}| \le$ 1, where $\kappa_{V}$ denotes $\kappa_{Z}$ or $\kappa_{W}$, and that $\mathrm{B_{BSM}} \ge$ 0. The results for the combination of ATLAS and CMS are reported with their measured and expected uncertainties. Also shown are the results from each experiment. For the parameters with both signs allowed, the other 1$\sigma$ interval is shown on a second line. For those parameters with no sensitivity to the sign, only the absolute values are shown.
Fit results allowing BSM loop couplings, assuming that there are no additional BSM contributions to the Higgs boson width, i.e. $\mathrm{B_{BSM}}=0$. The results for the combination of ATLAS and CMS are reported with their measured and expected uncertainties. Also shown are the results from each experiment. For the parameters with both signs allowed, the other 1$\sigma$ interval is shown on a second line. When a parameter is constrained and reaches a boundary, namely $\mathrm{B_{BSM}}$ = 0, the uncertainty is not indicated. For those parameters with no sensitivity to the sign, only the absolute values are shown.
Fit results for the parameterisation assuming the absence of BSM particles in the loops ($\mathrm{B_{BSM}}$=0). The results with their measured and expected uncertainties are reported for the combination of ATLAS and CMS, together with the individual results from each experiment. For the parameters with both signs allowed, the other 1$\sigma$ CL interval is shown on a second line. When a parameter is constrained and reaches a boundary, namely $|\kappa_\mu|$ = 0, the uncertainty is not indicated. For those parameters with no sensitivity to the sign, only the absolute values are shown.
Summary of fit results for a parameterisation probing the ratios of coupling modifiers for up-type versus down-type fermions. The results for the combination of ATLAS and CMS are reported together with their measured and expected uncertainties. Also shown are the results from each experiment. The parameter $\kappa_{uu}$ is positive definite since $\kappa_H$ is always assumed to be positive. For the parameter $\lambda_{du}$, for which both signs are allowed, the other 1$\sigma$ CL interval is shown on a second line. Negative values for the parameter $\lambda_{Vu}$ are excluded by more than 4$\sigma$.
Summary of fit results for a parameterisation probing the ratios of coupling modifiers for leptons versus quarks. The results for the combination of ATLAS and CMS are reported together with their measured and expected uncertainties. Also shown are the results from each experiment. The parameter $\kappa_{qq}$ is positive definite since $\kappa_H$ is always assumed to be positive. For the parameter $\lambda_{lq}$, for which there is no sensitivity to the sign, only the absolute values are shown. Negative values for the parameter $\lambda_{Vq}$ are excluded by more than 4$\sigma$.
Correlation matrix obtained from the fit combining the ATLAS and CMS data using the generic parameterisation with 23 parameters, $\sigma_i\cdot\mathrm{B}^f$ for each specific channel $i\to H\to f$. Only 20 parameters are shown because the other three, corresponding to the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, are not measured with a meaningful precision.
Correlation matrix obtained from the fit combining the ATLAS and CMS data using the generic parameterisation with nine parameters, $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$.
Correlation matrix obtained from the fit combining the ATLAS and CMS data using the generic parameterisation with seven parameters, $\kappa_{gZ}=\kappa_{g}\cdot\kappa_{Z} / \kappa_{H}$ and the ratios of coupling modifiers.
Expected correlation matrix obtained from the fit combining ATLAS and CMS pre-fit Asimov data sets using the generic parameterisation with 23 parameters, $\sigma_i\cdot\mathrm{B}^f$ for each specific channel $i\to H\to f$. Only 20 parameters are shown because the other three, corresponding to the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, are not measured with a meaningful precision.
Expected correlation matrix obtained from the fit combining ATLAS and CMS pre-fit Asimov data sets using the generic parameterisation with nine parameters, $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$.
Expected correlation matrix obtained from the fit combining ATLAS and CMS pre-fit Asimov data sets using the generic parameterisation with seven parameters, $\kappa_{gZ}=\kappa_{g}\cdot\kappa_{Z} / \kappa_{H}$ and the ratios of coupling modifiers.
ATLAS+CMS combined best-fit and 68% and 95% CL negative log-likelihood contours in the ($\kappa_{g}$,$\kappa_{\gamma}$) plane.
ATLAS best-fit and 68% and 95% CL negative log-likelihood contours in the ($\kappa_{g}$,$\kappa_{\gamma}$) plane.
CMS best-fit and 68% and 95% CL negative log-likelihood contours in the ($\kappa_{g}$,$\kappa_{\gamma}$) plane.
Best-fit and 68% and 95% CL negative log-likelihood contours in the ($\kappa_{F}$,$\kappa_{V}$) plane.
Best-fit and 68% CL negative log-likelihood contour in the ($\kappa_{F}$,$\kappa_{V}$) plane for the $H\rightarrow\gamma\gamma$ channel.
Best-fit and 68% CL negative log-likelihood contour in the ($\kappa_{F}$,$\kappa_{V}$) plane for the $H\rightarrow ZZ$ channel.
Best-fit and 68% CL negative log-likelihood contour in the ($\kappa_{F}$,$\kappa_{V}$) plane for the $H\rightarrow WW$ channel.
Best-fit and 68% CL negative log-likelihood contour in the ($\kappa_{F}$,$\kappa_{V}$) plane for the $H\rightarrow\tau\tau$ channel.
Best-fit and 68% CL negative log-likelihood contour in the ($\kappa_{F}$,$\kappa_{V}$) plane for the $H\rightarrow bb$ channel.
ATLAS best-fit and 68% and 95% CL negative log-likelihood contours in the ($\kappa_{F}$,$\kappa_{V}$) plane.
CMS best-fit and 68% and 95% CL negative log-likelihood contours in the ($\kappa_{F}$,$\kappa_{V}$) plane.
Best-fit and 68% CL negative log-likelihood contour in the ($\kappa_{F}$,$\kappa_{V}$) plane for the $H\rightarrow\gamma\gamma$ channel, assuming $\kappa_{F}>0$.
Best-fit and 68% CL negative log-likelihood contour in the ($\kappa_{F}$,$\kappa_{V}$) plane for the $H\rightarrow ZZ$ channel, assuming $\kappa_{F}>0$.
Best-fit and 68% CL negative log-likelihood contour in the ($\kappa_{F}$,$\kappa_{V}$) plane for the $H\rightarrow WW$ channel, assuming $\kappa_{F}>0$.
Best-fit and 68% CL negative log-likelihood contour in the ($\kappa_{F}$,$\kappa_{V}$) plane for the $H\rightarrow\tau\tau$ channel, assuming $\kappa_{F}>0$.
Best-fit and 68% CL negative log-likelihood contour in the ($\kappa_{F}$,$\kappa_{V}$) plane for the $H\rightarrow bb$ channel, assuming $\kappa_{F}>0$.
Best-fit and 68% and 95% CL negative log-likelihood contours in the ($\mu^{f}_{gg\mathrm{F}+ttH}$,$\mu^{f}_{\mathrm{VBF}+VH}$) plane for the $H\rightarrow\gamma\gamma$ channel.
Best-fit and 68% and 95% CL negative log-likelihood contours in the ($\mu^{f}_{gg\mathrm{F}+ttH}$,$\mu^{f}_{\mathrm{VBF}+VH}$) plane for the $H\rightarrow ZZ$ channel.
Best-fit and 68% and 95% CL negative log-likelihood contours in the ($\mu^{f}_{gg\mathrm{F}+ttH}$,$\mu^{f}_{\mathrm{VBF}+VH}$) plane for the $H\rightarrow WW$ channel.
Best-fit and 68% and 95% CL negative log-likelihood contours in the ($\mu^{f}_{gg\mathrm{F}+ttH}$,$\mu^{f}_{\mathrm{VBF}+VH}$) plane for the $H\rightarrow\tau\tau$ channel.
Best-fit and 68% and 95% CL negative log-likelihood contours in the ($\mu^{f}_{gg\mathrm{F}+ttH}$,$\mu^{f}_{\mathrm{VBF}+VH}$) plane for the $H\rightarrow bb$ channel.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.