Measurements of inclusive and normalized differential cross sections of the associated production of top quark-antiquark and bottom quark-antiquark pairs, ttbb, are presented. The results are based on data from proton-proton collisions collected by the CMS detector at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The cross sections are measured in the lepton+jets decay channel of the top quark pair, using events containing exactly one isolated electron or muon and at least five jets. Measurements are made in four fiducial phase space regions, targeting different aspects of the ttbb process. Distributions are unfolded to the particle level through maximum likelihood fits, and compared with predictions from several event generators. The inclusive cross section measurements of this process in the fiducial phase space regions are the most precise to date. In most cases, the measured inclusive cross sections exceed the predictions with the chosen generator settings. The only exception is when using a particular choice of dynamic renormalization scale, $\mu_\mathrm{R}=\frac{1}{2} \prod_{i = \mathrm{t, \bar{t}, b, \bar{b}}} m_{\mathrm{T},i}^{1/4}$, where $m_{\mathrm{T}, i}^2 = m_i^2 + p^2_{\mathrm{T}, i}$ are the transverse masses of top and bottom quarks. The differential cross sections show varying degrees of compatibility with the theoretical predictions, and none of the tested generators with the chosen settings simultaneously describe all the measured distributions.
A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum $p_\mathrm{T}$. This observable is measured in multijet events over the range of $p_\mathrm{T}$ = 360-3170 GeV based on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 134 fb$^{-1}$. The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is $\alpha_\mathrm{S}(m_\mathrm{Z})$ = 0.1177 $\pm$ 0.0013 (exp) $_{-0.0073}^{+0.0116}$ (theo) = 0.1177 $_{-0.0074}^{+0.0117}$, where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of $\alpha_\mathrm{S}(m_\mathrm{Z})$ in the TeV region shows no deviation from the expected NLO pQCD behaviour.
A study of the anomalous couplings of the Higgs boson to vector bosons, including $CP$-violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton-proton collision data collected with the CMS detector at the CERN LHC during 2016-2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The different-flavor dilepton (e$\mu$) final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.
A first search for beyond the standard model physics in jet multiplicity patterns of multilepton events is presented, using a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ of 13 TeV proton-proton collisions recorded by the CMS detector at the LHC. The search uses observed jet multiplicity distributions in one-, two-, and four-lepton events to explore possible enhancements in jet production rate in three-lepton events with and without bottom quarks. The data are found to be consistent with the standard model expectation. The results are interpreted in terms of supersymmetric production of electroweak chargino-neutralino superpartners with cascade decays terminating in prompt hadronic $R$-parity violating interactions.
The Lund jet plane (LJP) is measured for the first time in $t\overline{t}$ events, using 140 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV pp collision data collected with the ATLAS detector at the LHC. The LJP is a two-dimensional observable of the sub-structure of hadronic jets that acts as a proxy for the kinematics of parton showers and hadron formation. The observable is constructed from charged particles and is measured for R = 1.0 anti-$k_t$ jets with transverse momentum above 350 GeV containing the full decay products of either a top quark or a daughter $W$ boson. The other top quark in the event is identified from its decay into a b-quark, an electron or a muon and a neutrino. The measurement is corrected for detector effects and compared with a range of Monte Carlo predictions sensitive to different aspects of the hadronic decays of the heavy particles. In the $W$-boson-initiated jets, all the predictions are incompatible with the measurement. In the top quark initiated jets, disagreement with all predictions is observed in smaller subregions of the plane, and with a subset of the predictions across the fiducial plane. The measurement could be used to improve the tuning of Monte Carlo generators, for better modelling of hadronic decays of heavy quarks and bosons, or to improve the performance of jet taggers.
A search for an exotic decay of the Higgs boson to a Z boson and a light pseudoscalar particle (a), decaying to a pair of leptons and a pair of photons, respectively, is presented. The search is based on proton-proton collision data at a center-of-mass energy of $\sqrt{s}$ = 13 TeV, collected with the CMS detector and corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis probes pseudoscalar masses $m_\mathrm{a}$ between 1 and 30 GeV, leading to two pairs of well-isolated leptons and photons. Upper limits at 95% confidence level are set on the Higgs boson production cross section times its branching fraction to two leptons and two photons. The observed (expected) limits are in the range of 1.1-17.8 (1.7-17.9) fb within the probed $m_\mathrm{a}$ interval. An excess of data above the expected standard model background with a local (global) significance of 2.6 (1.3) standard deviations is observed for a mass hypothesis of $m_\mathrm{a}$ = 3 GeV. Limits on models involving axion-like particles, formulated as an effective field theory, are also reported.
A search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb$^{-1}$. Particle X has electric charge $\pm$ 1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%).
A search for nonresonant new physics phenomena in high-mass dilepton events produced in association with b-tagged jets is performed using proton-proton collision data collected in 2016$-$2018 by the CMS experiment at the CERN LHC, at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis considers two effective field theory models with dimension-six operators; involving four-fermion contact interactions between two leptons ($\ell\ell$, electrons or muons) and b or s quarks (bb$\ell\ell$ and bs$\ell\ell$). Two lepton flavor combinations (ee and $μμ$) are required and events are classified as having 0, 1, and $\geq$2 b-tagged jets in the final state. No significant excess is observed over the standard model backgrounds. Upper limits are set on the production cross section of the new physics signals. These translate into lower limits on the energy scale $Λ$ of 6.9 to 9.0 TeV in the bb$\ell\ell$ model, depending on model parameters, and on the ratio of energy scale and effective coupling, $Λ/g_*$, of 2.0 to 2.6 TeV in the bs$\ell\ell$ model. The latter represent the most stringent limits on this model to date. Lepton flavor universality is also tested by comparing the dielectron and dimuon mass spectra for different b-tagged jet multiplicities. No significant deviation from the standard model expectation of unity is observed.
A search for dark matter particles produced in association with a Higgs boson decaying into a pair of $\tau$ leptons is performed using data collected in proton-proton collisions at a center-of-mass energy of 13 TeV with the CMS detector. The analysis is based on a data set corresponding to an integrated luminosity of 101 fb$^{-1}$ collected in 2017$-$2018. No significant excess over the expected standard model background is observed. This result is interpreted within the frameworks of the 2HDM+a and baryonic Z$'$ benchmark simplified models. The 2HDM+a model is a type-II two-Higgs-doublet model featuring a heavy pseudoscalar with an additional light pseudoscalar. Upper limits at 95% confidence level are set on the product of the production cross section and the branching fraction for each of these two simplified models. Heavy pseudoscalar boson masses between 400 and 700 GeV are excluded for a light pseudoscalar mass of 100 GeV. For the baryonic Z$'$ model, a statistical combination is made with an earlier search based on a data set of 36 fb$^{-1}$ collected in 2016. In this model, Z$'$ boson masses up to 1050 GeV are excluded for a dark matter particle mass of 1 GeV.
A search for pairs of light neutral pseudoscalar bosons (A) resulting from the decay of a Higgs boson is performed. The search is conducted using LHC proton-proton collision data at $\sqrt{s}$ = 13 TeV, collected with the CMS detector in 2016$-$2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. The A boson decays into a highly collimated electron-positron pair. A novel multivariate algorithm using tracks and calorimeter information is developed to identify these distinctive signatures, and events are selected with two such merged electron-positron pairs. No significant excess above the standard model background predictions is observed. Upper limits on the branching fraction for H $\to$ AA $\to$ 4e are set at 95% confidence level, for masses between 10 and 100 MeV and proper decay lengths below 100 $μ$m, reaching branching fraction sensitivities as low as 10$^{-5}$. This is the first search for Higgs boson decays to four electrons via light pseudoscalars at the LHC. It significantly improves the experimental sensitivity to axion-like particles with masses below 100 MeV.