The first search for scalar leptoquarks produced in $\tau$-lepton-quark collisions is presented. It is based on a set of proton-proton collision data recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$. The reconstructed final state consists of a jet, significant missing transverse momentum, and a $\tau$ lepton reconstructed through its hadronic or leptonic decays. Limits are set on the product of the leptoquark production cross section and branching fraction and interpreted as exclusions in the plane of the leptoquark mass and the leptoquark-$\tau$-quark coupling strength.
A search for long-lived particles (LLPs) decaying in the CMS muon detectors is presented. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded at the LHC in 2016-2018, is used. The decays of LLPs are reconstructed as high multiplicity clusters of hits in the muon detectors. In the context of twin Higgs models, the search is sensitive to LLP masses from 0.4 to 55 GeV and a broad range of LLP decay modes, including decays to hadrons, $\tau$ leptons, electrons, or photons. No excess of events above the standard model background is observed. The most stringent limits to date from LHC data are set on the branching fraction of the Higgs boson decay to a pair of LLPs with masses below 10 GeV. This search also provides the best limits for various intervals of LLP proper decay length and mass. Finally, this search sets the first limits at the LHC on a dark quantum chromodynamic sector whose particles couple to the Higgs boson through gluon, Higgs boson, photon, vector, and dark-photon portals, and is sensitive to branching fractions of the Higgs boson to dark quarks as low as 2 $\times$ 10$^{-3}$.
A search for a new boson X is presented using CERN LHC proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016-2018, and corresponding to an integrated luminosity of 138 fb$^{-1}$. The resonance X decays into either a pair of Higgs bosons HH of mass 125 GeV or an H and a new spin-0 boson Y. One H subsequently decays to a pair of photons, and the second H or Y, to a pair of bottom quarks. The explored mass ranges of X are 260-1000 GeV and 300-1000 GeV, for decays to HH and to HY, respectively, with the Y mass range being 90-800 GeV. For a spin-0 X hypothesis, the 95% confidence level upper limit on the product of its production cross section and decay branching fraction is observed to be within 0.90-0.04 fb, depending on the masses of X and Y. The largest deviation from the background-only hypothesis with a local (global) significance of 3.8 (below 2.8) standard deviations is observed for X and Y masses of 650 and 90 GeV, respectively. The limits are interpreted using several models of new physics.
A measurement of the Higgs boson (H) production via vector boson fusion (VBF) and its decay into a bottom quark-antiquark pair ($\mathrm{b\bar{b}}$) is presented using proton-proton collision data recorded by the CMS experiment at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 90.8 fb$^{-1}$. Treating the gluon-gluon fusion process as a background and constraining its rate to the value expected in the standard model (SM) within uncertainties, the signal strength of the VBF process, defined as the ratio of the observed signal rate to that predicted by the SM, is measured to be $\mu^\text{qqH}_\mathrm{Hb\bar{b}}$ = 1.01 $^{+0.55}_{-0.46}$. The VBF signal is observed with a significance of 2.4 standard deviations relative to the background prediction, while the expected significance is 2.7 standard deviations. Considering inclusive Higgs boson production and decay into bottom quarks, the signal strength is measured to be $\mu^\text{incl.}_\mathrm{Hb\bar{b}}$ = 0.99 $^{+0.48}_{-0.41}$, corresponding to an observed (expected) significance of 2.6 (2.9) standard deviations.
Nuclear medium effects on B$^+$ meson production are studied using the binary-collision scaled cross section ratio between events of different charged-particle multiplicities from proton-lead collisions. Data, collected by the CMS experiment in 2016 at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV, corresponding to an integrated luminosity of 175 nb$^{-1}$, were used. The scaling factors in the ratio are determined using a novel approach based on the Z $\to$$\mu^+\mu^-$ cross sections measured in the same events. The scaled ratio for B$^+$ is consistent with unity for all event multiplicities, putting stringent constraints on nuclear modification for heavy flavor.
A search for a heavy pseudoscalar Higgs boson, A, decaying to a 125 GeV Higgs boson h and a Z boson is presented. The h boson is identified via its decay to a pair of tau leptons, while the Z boson is identified via its decay to a pair of electrons or muons. The search targets the production of the A boson via the gluon-gluon fusion process, gg $\to$ A, and in association with bottom quarks, $\mathrm{b\bar{b}}$A. The analysis uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the CERN LHC in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. Constraints are set on the product of the cross sections of the A production mechanisms and the A $\to$ Zh decay branching fraction. The observed (expected) upper limit at 95% confidence level ranges from 0.049 (0.060) pb to 1.02 (0.79) pb for the gg $\to$ A process and from 0.053 (0.059) pb to 0.79 (0.61) pb for the $\text{b}\bar{\text{b}}$A process in the probed range of the A boson mass, $m_\text{A}$, from 225 GeV to 1 TeV. The results of the search are used to constrain parameters within the ${\text{M}_{\text{h,EFT}}^{\text{125}}}$ benchmark scenario of the minimal supersymmetric extension of the standard model. Values of $\tanβ$ below 2.2 are excluded in this scenario at 95% confidence level for all $m_\text{A}$ values in the range from 225 to 350 GeV.
Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/$\psi$ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W$^\text{Pb}_{\gamma\text{N}}$), over a wide range of 40 $\lt$ W$^\text{Pb}_{\gamma\text{N}}$$\lt$ 400 GeV. Results are obtained using data at the nucleon-nucleon center-of-mass energy of 5.02 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 1.52 nb$^{-1}$. The cross section is observed to rise rapidly at low W$^\text{Pb}_{\gamma\text{N}}$, and plateau above W$^\text{Pb}_{\gamma\text{N}}$$\approx$ 40 GeV, up to 400 GeV, a new regime of small Bjorken-$x$ ($\approx$ 6 $\times$ 10$^{-5}$) gluons being probed in a heavy nucleus. The observed energy dependence is not predicted by current quantum chromodynamic models.
A measurement is presented of the cross section in proton-proton collisions for the production of two W bosons and one Z boson. It is based on data recorded by the CMS experiment at the CERN LHC at center-of-mass energies $\sqrt{s}$ = 13 and 13.6 TeV, corresponding to an integrated luminosity of 200 fb$^{-1}$. Events with four charged leptons (electrons or muons) in the final state are selected. Both nonresonant WWZ production and ZH production, with the Higgs boson decaying into two W bosons, are reported. For the first time, the two processes are measured separately in a simultaneous fit. Combining the two modes, signal strengths relative to the standard model (SM) predictions of 0.75 $^{+0.34}_{-0.29}$ and 1.74 $^{+0.71}_{-0.60}$ are measured for $\sqrt{s}$ = 13 and 13.6 TeV, respectively. The observed (expected) significance for the triboson signal is 3.8 (2.5) standard deviations for $\sqrt{s}$ = 13.6 TeV, thus providing the first evidence for triboson production at this center-of-mass energy. Combining the two modes and the two center-of-mass energies, the inclusive signal strength relative to the SM prediction is measured to be 1.03 $^{+0.31}_{-0.28}$, with an observed (expected) significance of 4.5 (5.0) standard deviations.
Incoherent J/$ψ$ photoproduction in heavy ion ultraperipheral collisions (UPCs) provides a sensitive probe of localized, fluctuating gluonic structures within heavy nuclei. This study reports the first measurement of the photon-nucleon center-of-mass energy ($W_{γ\mathrm{N}}$) dependence of this process in PbPb UPCs at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using 1.52 nb$^{-1}$ of data recorded by the CMS experiment. The measurement covers a wide $W_{γ\mathrm{N}}$ range of $\approx$ 40-400 GeV, probing gluons carrying a fraction $x$ of nucleon momentum down to an unexplored region of 6.5 $\times$ 10$^{-5}$. Compared to baseline predictions neglecting nuclear effects, the measured cross sections exhibit significantly greater suppression at lower $x$. Additionally, the ratio of incoherent to coherent photoproduction is found to be constant across the probed $W_{γ\mathrm{N}}$ and $x$ range, disfavoring the establishment of the black disk limit. This study provides critical insights into the $x$-dependent evolution of fluctuating gluonic structures within nuclei and calls for further advancements in theoretical models incorporating nuclear shadowing and gluon saturation.
Measurements of light-by-light scattering (LbL, $γγ$$\to$$γγ$) and the Breit-Wheeler process (BW, $γγ$$\to$$\mathrm{e^+e^-}$) are reported in ultraperipheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV. The data sample, corresponding to an integrated luminosity of 1.7 nb$^{-1}$, was collected by the CMS experiment at the CERN LHC in 2018. Events with an exclusively produced $γγ$ or $\mathrm{e^+e^-}$ pair with invariant masses $m^{γγ,\mathrm{ee}}$$>$ 5 GeV, along with other fiducial criteria, are selected. The measured BW fiducial production cross section, $σ_\text{fid}$($γγ$$\to$$\mathrm{e^+e^-}$) = 263.5 $\pm$ 1.8 (stat) $\pm$ 17.8 (syst) $μ$b, as well as the differential distributions for various kinematic observables, are in agreement with leading-order quantum electrodynamics predictions complemented with final-state photon radiation. The measured differential BW cross sections allow discriminating between different theoretical descriptions of the photon flux of the lead ion. In the LbL final state, 26 exclusive diphoton candidate events are observed compared with 12.0 $\pm$ 2.9 expected for the background. Combined with previous results, the observed significance of the LbL signal with respect to the background-only hypothesis is above five standard deviations. The measured fiducial LbL scattering cross section, $σ_\text{fid} (γγ$$\to$$γγ)$ = 107 $\pm$ 24 (stat) $\pm$ 13 (syst) nb, is in agreement with next-to-leading-order predictions. Limits on the production of axion-like particles coupled to photons are set over the mass range 5-100 GeV, including the most stringent limits to date in the range of 5-10 GeV.