Showing 1 of 1 results
A measurement of jet substructure observables is presented using \ttbar events in the lepton+jets channel from proton-proton collisions at $\sqrt{s}=$ 13 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Multiple jet substructure observables are measured for jets identified as bottom, light-quark, and gluon jets, as well as for inclusive jets (no flavor information). The results are unfolded to the particle level and compared to next-to-leading-order predictions from POWHEG interfaced with the parton shower generators PYTHIA 8 and HERWIG 7, as well as from SHERPA 2 and DIRE2. A value of the strong coupling at the Z boson mass, $\alpha_S(m_\mathrm{Z}) = $ 0.115$^{+0.015}_{-0.013}$, is extracted from the substructure data at leading-order plus leading-log accuracy.
Distribution of $\lambda_{0}^{0}$ (N) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{0}^{2}$ ($p_{T}^{d,*})$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{0.5}^{1}$ (LHA) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{1}^{1}$ (width) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{2}^{1}$ (thrust) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\varepsilon$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $z_{g}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\Delta R_{g}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $n_{SD}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\tau_{21}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\tau_{32}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\tau_{43}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(0.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(0.2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(0.5)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(1.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(2.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(0.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(0.2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(0.5)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(1.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(2.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(0.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(0.2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(0.5)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(1.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(2.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $M_{2}^{(1)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{2}^{(1)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{3}^{(1)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $M_{2}^{(2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{2}^{(2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{3}^{(2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{0}^{0}$ (N) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{0}^{2}$ ($p_{T}^{d,*})$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{0.5}^{1}$ (LHA) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{1}^{1}$ (width) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\lambda_{2}^{1}$ (thrust) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\varepsilon$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $z_{g}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\Delta R_{g}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $n_{SD}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\tau_{21}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\tau_{32}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $\tau_{43}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(0.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(0.2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(0.5)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(1.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{1}^{(2.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(0.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(0.2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(0.5)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(1.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{2}^{(2.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(0.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(0.2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(0.5)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(1.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $C_{3}^{(2.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $M_{2}^{(1)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{2}^{(1)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{3}^{(1)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $M_{2}^{(2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{2}^{(2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Distribution of $N_{3}^{(2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{0}^{0}$ (N) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{0}^{2}$ ($p_{T}^{d,*})$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{0.5}^{1}$ (LHA) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{1}^{1}$ (width) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{2}^{1}$ (thrust) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\varepsilon$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $z_{g}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\Delta R_{g}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $n_{SD}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\tau_{21}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\tau_{32}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\tau_{43}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(0.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(0.2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(0.5)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(1.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(2.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(0.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(0.2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(0.5)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(1.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(2.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(0.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(0.2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(0.5)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(1.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(2.0)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $M_{2}^{(1)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{2}^{(1)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{3}^{(1)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $M_{2}^{(2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{2}^{(2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{3}^{(2)}$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{0}^{0}$ (N) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{0}^{2}$ ($p_{T}^{d,*})$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{0.5}^{1}$ (LHA) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{1}^{1}$ (width) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\lambda_{2}^{1}$ (thrust) reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\varepsilon$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $z_{g}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\Delta R_{g}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $n_{SD}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\tau_{21}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\tau_{32}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $\tau_{43}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(0.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(0.2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(0.5)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(1.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{1}^{(2.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(0.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(0.2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(0.5)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(1.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{2}^{(2.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(0.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(0.2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(0.5)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(1.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $C_{3}^{(2.0)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $M_{2}^{(1)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{2}^{(1)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{3}^{(1)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $M_{2}^{(2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{2}^{(2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
Covariance matrix for $N_{3}^{(2)}$ reconstructed from all particles with pt > 1 GeV, unfolded to the particle level.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.