Showing 2 of 2 results
Measurements of differential and double-differential cross sections of top quark pair ($\text{t}\overline{\text{t}}$) production are presented in the lepton+jets channels with a single electron or muon and jets in the final state. The analysis combines for the first time signatures of top quarks with low transverse momentum $p_\text{T}$, where the top quark decay products can be identified as separated jets and isolated leptons, and with high $p_\text{T}$, where the decay products are collimated and overlap. The measurements are based on proton-proton collision data at $\sqrt{s} = $ 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The cross sections are presented at the parton and particle levels, where the latter minimizes extrapolations based on theoretical assumptions. Most of the measured differential cross sections are well described by standard model predictions with the exception of some double-differential distributions. The inclusive $\text{t}\overline{\text{t}}$ production cross section is measured to be $\sigma_{\text{t}\overline{\text{t}}} = $ 791 $\pm$ 25 pb, which constitutes the most precise measurement in the lepton+jets channel to date.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
A search for the production of heavy partners of the top quark with charge 5/3 is performed in events with a pair of same-sign leptons. The data sample corresponds to an integrated luminosity of 19.5 inverse femtobarns and was collected at sqrt(s) = 8 TeV by the CMS experiment. No significant excess is observed in the data above the expected background and the existence of top-quark partners with masses below 800 GeV is excluded at a 95% confidence level, assuming they decay exclusively to tW. This is the first limit on these particles from the LHC, and it is significantly more restrictive than previous limits.
The distribution of HT for all channels combined after the full selection except for the HT requirement itself.
Expected and observed 95% CL limits on the $\mathrm{T}_{5/3}$ production cross section times the branching fraction for decay to same-sign dileptons.
The distribution of HT for all channels combined, after the requirement of same- sign dileptons, the Z-boson veto, and a requirement of at least two jets.
The distribution of the reconstructed $\mathrm{T}_{5/3}$ mass for the data, the background, and three signal mass points.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.