Showing 10 of 999 results
Two-particle correlation measurements projected onto two-dimensional, transverse rapidity coordinates ($y_{T1},y_{T2}$), allow access to dynamical properties of the QCD medium produced in relativistic heavy-ion collisions that angular correlation measurements are not sensitive to. We report non-identified charged-particle correlations for Au + Au minimum-bias collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV taken by the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). Correlations are presented as 2D functions of transverse rapidity for like-sign, unlike-sign and all charged-particle pairs, as well as for particle pairs whose relative azimuthal angles lie on the near-side, the away-side, or at all relative azimuth. The correlations are constructed using charged particles with transverse momentum $p_T \geq 0.15$ GeV/$c$, pseudorapidity from $-$1 to 1, and azimuthal angles from $-\pi$ to $\pi$. The significant correlation structures that are observed evolve smoothly with collision centrality. The major correlation features include a saddle shape plus a broad peak with maximum near $y_T \approx 3$, corresponding to $p_T \approx$ 1.5 GeV/$c$. The broad peak is observed in both like- and unlike-sign charge combinations and in near- and away-side relative azimuthal angles. The all-charge, all-azimuth correlation measurements are compared with the theoretical predictions of {\sc hijing} and {\sc epos}. The results indicate that the correlations for peripheral to mid-central collisions can be approximately described as a superposition of nucleon + nucleon collisions with minimal effects from the QCD medium. Strong medium effects are indicated in mid- to most-central collisions.
Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 84-93%.
Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 74-84%.
Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 64-74%.
Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 55-64%.
Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 46-55%.
Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 38-46%.
Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 28-38%.
Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 18-28%.
Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 9-18%.
Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 5-9%.
Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 0-5%.
Two-dimensional correlations of charged-hadrons, all-CD, projected onto (y_t1, y_t2), in centrality bin 84-93%.
Two-dimensional correlations of charged-hadrons, all-CD, projected onto (y_t1, y_t2), in centrality bin 74-84%.
Two-dimensional correlations of charged-hadrons, all-CD, projected onto (y_t1, y_t2), in centrality bin 64-74%.
Two-dimensional correlations of charged-hadrons, all-CD, projected onto (y_t1, y_t2), in centrality bin 55-64%.
Two-dimensional correlations of charged-hadrons, all-CD, projected onto (y_t1, y_t2), in centrality bin 46-55%.
Two-dimensional correlations of charged-hadrons, all-CD, projected onto (y_t1, y_t2), in centrality bin 38-46%.
Two-dimensional correlations of charged-hadrons, all-CD, projected onto (y_t1, y_t2), in centrality bin 28-38%.
Two-dimensional correlations of charged-hadrons, all-CD, projected onto (y_t1, y_t2), in centrality bin 18-28%.
Two-dimensional correlations of charged-hadrons, all-CD, projected onto (y_t1, y_t2), in centrality bin 9-18%.
Two-dimensional correlations of charged-hadrons, all-CD, projected onto (y_t1, y_t2), in centrality bin 5-9%.
Two-dimensional correlations of charged-hadrons, all-CD, projected onto (y_t1, y_t2), in centrality bin 0-5%.
Two-dimensional correlations of charged-hadrons, all-LS, projected onto (y_t1, y_t2), in centrality bin 84-93%.
Two-dimensional correlations of charged-hadrons, all-LS, projected onto (y_t1, y_t2), in centrality bin 74-84%.
Two-dimensional correlations of charged-hadrons, all-LS, projected onto (y_t1, y_t2), in centrality bin 64-74%.
Two-dimensional correlations of charged-hadrons, all-LS, projected onto (y_t1, y_t2), in centrality bin 55-64%.
Two-dimensional correlations of charged-hadrons, all-LS, projected onto (y_t1, y_t2), in centrality bin 46-55%.
Two-dimensional correlations of charged-hadrons, all-LS, projected onto (y_t1, y_t2), in centrality bin 38-46%.
Two-dimensional correlations of charged-hadrons, all-LS, projected onto (y_t1, y_t2), in centrality bin 28-38%.
Two-dimensional correlations of charged-hadrons, all-LS, projected onto (y_t1, y_t2), in centrality bin 18-28%.
Two-dimensional correlations of charged-hadrons, all-LS, projected onto (y_t1, y_t2), in centrality bin 9-18%.
Two-dimensional correlations of charged-hadrons, all-LS, projected onto (y_t1, y_t2), in centrality bin 5-9%.
Two-dimensional correlations of charged-hadrons, all-LS, projected onto (y_t1, y_t2), in centrality bin 0-5%.
Two-dimensional correlations of charged-hadrons, all-US, projected onto (y_t1, y_t2), in centrality bin 84-93%.
Two-dimensional correlations of charged-hadrons, all-US, projected onto (y_t1, y_t2), in centrality bin 74-84%.
Two-dimensional correlations of charged-hadrons, all-US, projected onto (y_t1, y_t2), in centrality bin 64-74%.
Two-dimensional correlations of charged-hadrons, all-US, projected onto (y_t1, y_t2), in centrality bin 55-64%.
Two-dimensional correlations of charged-hadrons, all-US, projected onto (y_t1, y_t2), in centrality bin 46-55%.
Two-dimensional correlations of charged-hadrons, all-US, projected onto (y_t1, y_t2), in centrality bin 38-46%.
Two-dimensional correlations of charged-hadrons, all-US, projected onto (y_t1, y_t2), in centrality bin 28-38%.
Two-dimensional correlations of charged-hadrons, all-US, projected onto (y_t1, y_t2), in centrality bin 18-28%.
Two-dimensional correlations of charged-hadrons, all-US, projected onto (y_t1, y_t2), in centrality bin 9-18%.
Two-dimensional correlations of charged-hadrons, all-US, projected onto (y_t1, y_t2), in centrality bin 5-9%.
Two-dimensional correlations of charged-hadrons, all-US, projected onto (y_t1, y_t2), in centrality bin 0-5%.
Two-dimensional correlations of charged-hadrons, NS-LS, projected onto (y_t1, y_t2), in centrality bin 84-93%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-LS, projected onto (y_t1, y_t2), in centrality bin 74-84%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-LS, projected onto (y_t1, y_t2), in centrality bin 64-74%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-LS, projected onto (y_t1, y_t2), in centrality bin 55-64%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-LS, projected onto (y_t1, y_t2), in centrality bin 46-55%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-LS, projected onto (y_t1, y_t2), in centrality bin 38-46%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-LS, projected onto (y_t1, y_t2), in centrality bin 28-38%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-LS, projected onto (y_t1, y_t2), in centrality bin 18-28%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-LS, projected onto (y_t1, y_t2), in centrality bin 9-18%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-LS, projected onto (y_t1, y_t2), in centrality bin 5-9%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-LS, projected onto (y_t1, y_t2), in centrality bin 0-5%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-US, projected onto (y_t1, y_t2), in centrality bin 84-93%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-US, projected onto (y_t1, y_t2), in centrality bin 74-84%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-US, projected onto (y_t1, y_t2), in centrality bin 64-74%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-US, projected onto (y_t1, y_t2), in centrality bin 55-64%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-US, projected onto (y_t1, y_t2), in centrality bin 46-55%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-US, projected onto (y_t1, y_t2), in centrality bin 38-46%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-US, projected onto (y_t1, y_t2), in centrality bin 28-38%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-US, projected onto (y_t1, y_t2), in centrality bin 18-28%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-US, projected onto (y_t1, y_t2), in centrality bin 9-18%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-US, projected onto (y_t1, y_t2), in centrality bin 5-9%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-US, projected onto (y_t1, y_t2), in centrality bin 0-5%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-LS, projected onto (y_t1, y_t2), in centrality bin 84-93%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-LS, projected onto (y_t1, y_t2), in centrality bin 74-84%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-LS, projected onto (y_t1, y_t2), in centrality bin 64-74%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-LS, projected onto (y_t1, y_t2), in centrality bin 55-64%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-LS, projected onto (y_t1, y_t2), in centrality bin 46-55%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-LS, projected onto (y_t1, y_t2), in centrality bin 38-46%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-LS, projected onto (y_t1, y_t2), in centrality bin 28-38%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-LS, projected onto (y_t1, y_t2), in centrality bin 18-28%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-LS, projected onto (y_t1, y_t2), in centrality bin 9-18%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-LS, projected onto (y_t1, y_t2), in centrality bin 5-9%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-LS, projected onto (y_t1, y_t2), in centrality bin 0-5%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-US, projected onto (y_t1, y_t2), in centrality bin 84-93%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-US, projected onto (y_t1, y_t2), in centrality bin 74-84%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-US, projected onto (y_t1, y_t2), in centrality bin 64-74%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-US, projected onto (y_t1, y_t2), in centrality bin 55-64%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-US, projected onto (y_t1, y_t2), in centrality bin 46-55%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-US, projected onto (y_t1, y_t2), in centrality bin 38-46%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-US, projected onto (y_t1, y_t2), in centrality bin 28-38%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-US, projected onto (y_t1, y_t2), in centrality bin 18-28%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-US, projected onto (y_t1, y_t2), in centrality bin 9-18%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-US, projected onto (y_t1, y_t2), in centrality bin 5-9%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-US, projected onto (y_t1, y_t2), in centrality bin 0-5%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CI, projected onto (y_t1, y_t2), in centrality bin 84-93%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CI, projected onto (y_t1, y_t2), in centrality bin 74-84%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CI, projected onto (y_t1, y_t2), in centrality bin 64-74%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CI, projected onto (y_t1, y_t2), in centrality bin 55-64%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CI, projected onto (y_t1, y_t2), in centrality bin 46-55%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CI, projected onto (y_t1, y_t2), in centrality bin 38-46%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CI, projected onto (y_t1, y_t2), in centrality bin 28-38%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CI, projected onto (y_t1, y_t2), in centrality bin 18-28%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CI, projected onto (y_t1, y_t2), in centrality bin 9-18%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CI, projected onto (y_t1, y_t2), in centrality bin 5-9%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CI, projected onto (y_t1, y_t2), in centrality bin 0-5%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CI, projected onto (y_t1, y_t2), in centrality bin 84-93%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CI, projected onto (y_t1, y_t2), in centrality bin 74-84%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CI, projected onto (y_t1, y_t2), in centrality bin 64-74%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CI, projected onto (y_t1, y_t2), in centrality bin 55-64%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CI, projected onto (y_t1, y_t2), in centrality bin 46-55%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CI, projected onto (y_t1, y_t2), in centrality bin 38-46%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CI, projected onto (y_t1, y_t2), in centrality bin 28-38%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CI, projected onto (y_t1, y_t2), in centrality bin 18-28%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CI, projected onto (y_t1, y_t2), in centrality bin 9-18%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CI, projected onto (y_t1, y_t2), in centrality bin 5-9%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CI, projected onto (y_t1, y_t2), in centrality bin 0-5%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CD, projected onto (y_t1, y_t2), in centrality bin 84-93%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CD, projected onto (y_t1, y_t2), in centrality bin 74-84%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CD, projected onto (y_t1, y_t2), in centrality bin 64-74%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CD, projected onto (y_t1, y_t2), in centrality bin 55-64%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CD, projected onto (y_t1, y_t2), in centrality bin 46-55%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CD, projected onto (y_t1, y_t2), in centrality bin 38-46%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CD, projected onto (y_t1, y_t2), in centrality bin 28-38%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CD, projected onto (y_t1, y_t2), in centrality bin 18-28%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CD, projected onto (y_t1, y_t2), in centrality bin 9-18%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CD, projected onto (y_t1, y_t2), in centrality bin 5-9%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, NS-CD, projected onto (y_t1, y_t2), in centrality bin 0-5%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CD, projected onto (y_t1, y_t2), in centrality bin 84-93%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CD, projected onto (y_t1, y_t2), in centrality bin 74-84%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CD, projected onto (y_t1, y_t2), in centrality bin 64-74%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CD, projected onto (y_t1, y_t2), in centrality bin 55-64%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CD, projected onto (y_t1, y_t2), in centrality bin 46-55%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CD, projected onto (y_t1, y_t2), in centrality bin 38-46%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CD, projected onto (y_t1, y_t2), in centrality bin 28-38%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CD, projected onto (y_t1, y_t2), in centrality bin 18-28%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CD, projected onto (y_t1, y_t2), in centrality bin 9-18%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CD, projected onto (y_t1, y_t2), in centrality bin 5-9%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Two-dimensional correlations of charged-hadrons, AS-CD, projected onto (y_t1, y_t2), in centrality bin 0-5%. Only centrality bins 74-84%, 46 - 55%, 18-28%, and 0-5% shown in paper.
Fit results for the amplitudes of the measured and predicted correlation peak near (yT 1, yT 2) ≈ (3,3) as a function of centrality
Fit results for the yTSigma_0 of the measured and predicted correlation peak near (yT 1, yT 2) ≈ (3,3) as a function of centrality
Fit results for the amplitudes of the measured and predicted correlation peak near (yT 1, yT 2) ≈ (3,1) as a function of centrality
Fit results for the yT_1 of the measured and predicted correlation peak near (yT 1, yT 2) ≈ (3,1) as a function of centrality
Fit results for the yT_2 of the measured and predicted correlation peak near (yT 1, yT 2) ≈ (3,1) as a function of centrality
A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultra-relativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus forming a short-lived vector meson (e.g. ${\rho^0}$). In this experiment, the polarization was utilized in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of ${\rho^0\rightarrow\pi^+\pi^-}$ decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ${\rho^0}$ travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions, and found to be $6.53\pm 0.06$ fm ($^{197} {\rm Au }$) and $7.29\pm 0.08$ fm ($^{238} {\rm U}$), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of non-identical particles.
The invariant mass distribution of pi+pi- pairs collected from Au+Au and U+U collisions.
Two-dimensional $\rho^0$ momentum distribution from Au+Au collisions.
Two-dimensional $\rho^0$ momentum distribution from Au+Au collisions.
Two-dimensional $\rho^0$ momentum distribution from U+U collisions.
The $P_T^2 \approx |t|$ distribution of $\rho^0$ collected from Au+Au collisions.
The $P_T^2 \approx |t|$ distribution of $\rho^0$ collected from U+U collisions.
The $P_T^2 \approx |t|$ distribution of $\rho^0$ with $|\phi| < \pi/24$ collected from Au+Au collisions.
The $P_T^2 \approx |t|$ distribution of $\rho^0$ with $|\phi - \pi/2| < \pi/24$ collected from Au+Au collisions.
The $\phi$ distribution for $\pi^+\pi^-$ pairs with a pair transverse momentum less than 60 MeV and and an invariant mass between 650 and 900 MeV
The $\phi$ distribution for $\pi^+\pi^-$ pairs with a pair transverse momentum less than 60 MeV and and an invariant mass between 650 and 900 MeV
The $2 \langle \cos{2 \phi} \rangle$ distribution vs. pair transverse momentum for $\pi^+\pi^-$ pairs with an invariant mass between 650 and 900 MeV.
The $2 \langle \cos{2\phi} \rangle$ distribution vs. pair transverse momentum for $\pi^+\pi^-$ pairs with an invariant mass between 650 and 900 MeV.
The $2 \langle \cos{2\phi} \rangle$ distribution vs. pair transverse momentum for $\pi^+\pi^-$ pairs with an invariant mass between 650 and 900 MeV from Au+Au collisions.
The distribution of extracted radii R vs. $\phi$ from Au+Au and U+U.
We present high-precision measurements of elliptic, triangular, and quadrangular flow $v_{2}$, $v_{3}$, and $v_{4}$, respectively, at midrapidity ($|\eta|<1.0$) for identified hadrons $\pi$, $p$, $K$, $\varphi$, $K_s$, $\Lambda$ as a function of centrality and transverse momentum in Au+Au collisions at the center-of-mass energy $\sqrt{s_{\rm NN}}=$ 200 GeV. We observe similar $v_{n}$ trends between light and strange mesons which indicates that the heavier strange quarks flow as strongly as the lighter up and down quarks. The number-of-constituent-quark scaling for $v_{2}$, $v_{3}$, and $v_{4}$ is found to hold within statistical uncertainty for 0-10$\%$, 10-40$\%$ and 40-80$\%$ collision centrality intervals. The results are compared to several viscous hydrodynamic calculations with varying initial conditions, and could serve as an additional constraint to the development of hydrodynamic models.
The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles and their difference for 0-80 central Au+Au collisions.
The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles and their difference for 0-80 central Au+Au collisions.
The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles and their difference for 0-80 central Au+Au collisions.
The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles and their difference for 0-80 central Au+Au collisions.
The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles and their difference for 0-80 central Au+Au collisions.
The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles and their difference for 0-80 central Au+Au collisions.
The transverse momentum dependence of elliptic flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of elliptic flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of elliptic flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of elliptic flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of elliptic flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of elliptic flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of triangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of triangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of triangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of triangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of triangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of triangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of triangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of triangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of triangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of triangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of quadrangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of quadrangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of quadrangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of quadrangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of quadrangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of quadrangular flow of particles, antiparticles for 0-80 central Au+Au collisions.
The transverse momentum dependence of $v_{2} \pi^{+}$ for 0-10 central Au+Au collisions.
The transverse momentum dependence of $v_{2} \pi^{+}$ for 0-10 central Au+Au collisions.
The transverse momentum dependence of $v_{2} \pi^{+}$ for 10-40 central Au+Au collisions.
The transverse momentum dependence of $v_{2} \pi^{+}$ for 10-40 central Au+Au collisions.
The transverse momentum dependence of $v_{2} \pi^{+}$, for 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{2} \pi^{+}$, for 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{2} k^{+}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{2} k^{+}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{2} p^{+}$, for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{2} p^{+}$, for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{3} \pi^{+}$ for 0-10 central Au+Au collisions.
The transverse momentum dependence of $v_{3} \pi^{+}$ for 0-10 central Au+Au collisions.
The transverse momentum dependence of $v_{3} \pi^{+}$ for 10-40 central Au+Au collisions.
The transverse momentum dependence of $v_{3} \pi^{+}$ for 10-40 central Au+Au collisions.
The transverse momentum dependence of $v_{3} \pi^{+}$, for 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{3} \pi^{+}$, for 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{3} k^{+}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{3} k^{+}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{3} p^{+}$, for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{3} p^{+}$, for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{4} \pi^{+}$ for 0-10 central Au+Au collisions.
The transverse momentum dependence of $v_{4} \pi^{+}$ for 0-10 central Au+Au collisions.
The transverse momentum dependence of $v_{4} \pi^{+}$ for 10-40 central Au+Au collisions.
The transverse momentum dependence of $v_{4} \pi^{+}$ for 10-40 central Au+Au collisions.
The transverse momentum dependence of $v_{4} \pi^{+}$, for 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{4} \pi^{+}$, for 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{4} K^{+}$ for 0-10 central Au+Au collisions.
The transverse momentum dependence of $v_{4} K^{+}$ for 0-10 central Au+Au collisions.
The transverse momentum dependence of $v_{4} K^{+}$ for 10-40 central Au+Au collisions.
The transverse momentum dependence of $v_{4} K^{+}$ for 10-40 central Au+Au collisions.
The transverse momentum dependence of $v_{4} K^{+}$, for 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{4} K^{+}$, for 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{4} p^{+}$ for 0-10 central Au+Au collisions.
The transverse momentum dependence of $v_{4} p^{+}$ for 0-10 central Au+Au collisions.
The transverse momentum dependence of $v_{4} p^{+}$ for 10-40 central Au+Au collisions.
The transverse momentum dependence of $v_{4} p^{+}$ for 10-40 central Au+Au collisions.
The transverse momentum dependence of $v_{4} p^{+}$, for 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{4} p^{+}$, for 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{2} \pi^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{2} \pi^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{2} k^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{2} k^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{2} p^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{2} p^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{3} \pi^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{3} \pi^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{3}ki^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{3}ki^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{3} p^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{3} p^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{4} \pi^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{4} \pi^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{4} p^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{4} p^{-}$ for 0-10, 10-40 and 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{4} k^{-}$ for 0-10 central Au+Au collisions.
The transverse momentum dependence of $v_{4} k^{-}$ for 0-10 central Au+Au collisions.
The transverse momentum dependence of $v_{4} k^{-}$ for 10-40 central Au+Au collisions.
The transverse momentum dependence of $v_{4} k^{-}$ for 10-40 central Au+Au collisions.
The transverse momentum dependence of $v_{4} k^{-}$ for 40-80 central Au+Au collisions.
The transverse momentum dependence of $v_{4} k^{-}$ for 40-80 central Au+Au collisions.
The centrality dependence of $v_{2} (\pi, K, p) $ for Au+Au collisions.
The centrality dependence of $v_{2} (\pi, K, p) $ for Au+Au collisions.
The centrality dependence of $v_{3} (\pi, K, p) $ for Au+Au collisions.
The centrality dependence of $v_{3} (\pi, K, p) $ for Au+Au collisions.
A search for an extended Higgs sector, characterized by a massive resonance X decaying to a pair of spin-0 bosons $\phi$ that themselves decay to pairs of bottom quarks, is presented. The analysis is restricted to the mass ranges $m_\phi$ from 25 to 100 GeV and $m_\mathrm{X}$ from 1 to 3 TeV. For these mass ranges, the decay products of each $\phi$ boson are expected to merge into a single large-radius jet. Jet substructure and flavor identification techniques are used to identify these jets. The search is based on CERN LHC proton-proton collision data at $\sqrt{s} =$ 13 TeV, collected with the CMS detector in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Model-specific limits are set on the product of the production cross section and branching fraction for X $\to$$\phi\phi$$\to$$(\mathrm{b\bar{b}})(\mathrm{b\bar{b}})$ as a function of mass, where both the X $\to$$\phi\phi$ and $\phi$$\to$$\mathrm{b\bar{b}}$ branching fractions are assumed to be 100%. These limits are the first of their kind on this process, ranging between 30 and 1 fb at 95% confidence level for the considered mass ranges.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 25 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 30 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 35 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 40 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 45 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 50 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 55 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 60 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 65 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 70 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 75 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 80 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 85 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 90 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 95 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 100 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.
Data event yields and predicted signal and background yields (including subdominant $t\bar{t}$) in bins of dijet and average jet mass.
A search is presented for a heavy W' boson resonance decaying to a B or T vector-like quark and a t or a b quark, respectively. The analysis is performed using proton-proton collisions collected with the CMS detector at the LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV. Both decay channels result in a signature with a t quark, a Higgs or Z boson, and a b quark, each produced with a significant Lorentz boost. The all-hadronic decays of the Higgs or Z boson and of the t quark are selected using jet substructure techniques to reduce standard model backgrounds, resulting in a distinct three-jet W' boson decay signature. No significant deviation in data with respect to the standard model background prediction is observed. Upper limits are set at 95% confidence level on the product of the W' boson cross section and the final state branching fraction. A W' boson with a mass below 3.1 TeV is excluded, given the benchmark model assumption of democratic branching fractions. In addition, limits are set based on generalizations of these assumptions. These are the most sensitive limits to date for this final state.
Reconstructed W′ boson mass distributions in the tHb signal region.
Reconstructed W′ boson mass distributions in the tZb signal region.
The W' boson 95% CL limits on the product of cross section and branching fraction. The expected and observed limits are shown for the center VLQ mass range.
The W' boson 95% CL limits on the product of cross section and branching fraction. The expected and observed limits are shown for the high VLQ mass range.
The W' boson 95% CL limits on the product of cross section and branching fraction. The expected and observed limits are shown for the low VLQ mass range.
Expected 95% CL limits for generalized hypotheses varying the fraction of tB (F(VLQ=B)) and bT (F(VLQ=T)) from the W′ decay
Expected 95% CL limits for generalized hypotheses varying the VLQ branching fraction to qH and qZ
Observed 95% CL limits for generalized hypotheses varying the fraction of tB (F(VLQ=B)) and bT (F(VLQ=T)) from the W′ decay
Observed 95% CL limits for generalized hypotheses varying the VLQ branching fraction to qH and qZ
A measurement of the forward-backward asymmetry of pairs of oppositely charged leptons (dimuons and dielectrons) produced by the Drell-Yan process in proton-proton collisions is presented. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV. The asymmetry is measured as a function of lepton pair mass for masses larger than 170\GeV and compared with standard model predictions. An inclusive measurement across both channels and the full mass range yields an asymmetry of 0.599 $\pm$ 0.005 (stat) $\pm$ 0.007 (syst). As a test of lepton flavor universality, the difference between the dimuon and dielectron asymmetries is measured as well. No statistically significant deviations from standard model predictions are observed. The measurements are used to set limits on the presence of additional gauge bosons. For a Z' in the sequential standard model, a lower mass limit of 4.4 TeV is set at 95% confidence level.
Results for the measurement of $A_\mathrm{FB}$ from the maximum likelihood fit to data in different dilepton mass bins in the different channels as well as an inclusive measurement across all mass bins.
Results for the measurement of $A_0$ from the maximum likelihood fit to data in different dilepton mass bins in the different channels as well as inclusive measurement across all mass bins. To help in the interpretation of these results, we also list the average dilepton $p_{T}$ of the data events in each mass bin.
Results for the measurement of $\Delta A_\mathrm{FB}$ and $\Delta A_0$ between the muon and electron channels from the maximum likelihood fit to data in different mass bins as well as an inclusive measurement across all mass bins.
The fraction of photon-induced background as compared with the total amount of DY signal plus photon-induced events ($N_{\gamma\gamma}/(N_{\gamma\gamma} + N_\mathrm{DY})$) in different dilepton mass bins. These numbers are averaged across the different years and channels.
Exclusion limits at 95% CL on the coupling K_L for a Z' in the sequential standard model as a function of the Z' mass.
Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into $\mu^+\mu^-$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S))$$\gt$$R_\mathrm{pPb}(\Upsilon(2S))$$\gt$$R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon$$\lt$ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert$$\lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.
Differential cross section times dimuon branching fraction of Y(1S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.
Differential cross section times dimuon branching fraction of Y(2S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.
Differential cross section times dimuon branching fraction of Y(3S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.
Differential cross section times dimuon branching fraction of Y(1S) as a function of $y^{Y}_{CM}$ in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.
Differential cross section times dimuon branching fraction of Y(2S) as a function of $y^{Y}_{CM}$ in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.
Differential cross section times dimuon branching fraction of Y(3S) as a function of $y^{Y}_{CM}$ in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.
Differential cross section times dimuon branching fraction of Y(1S) as a function of pT in pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.
Differential cross section times dimuon branching fraction of Y(2S) as a function of pT in pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.
Differential cross section times dimuon branching fraction of Y(3S) as a function of pT in pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.
Differential cross section times dimuon branching fraction of Y(1S) as a function of $|y^{Y}_{CM}|$ in pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.
Differential cross section times dimuon branching fraction of Y(2S) as a function of $|y^{Y}_{CM}|$ in pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.
Differential cross section times dimuon branching fraction of Y(3S) as a function of $|y^{Y}_{CM}|$ in pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.
Nuclear modification factor of Y(1S) as a function of pT. The global uncertainty arises from the integrated luminosity uncertainties in pPb and pp collisions.
Nuclear modification factor of Y(2S) as a function of pT. The global uncertainty arises from the integrated luminosity uncertainties in pPb and pp collisions.
Nuclear modification factor of Y(3S) as a function of pT. The global uncertainty arises from the integrated luminosity uncertainties in pPb and pp collisions.
Nuclear modification factor of Y(1S) as a function of $y^{Y}_{CM}$. The global uncertainty arises from the integrated luminosity uncertainties in pPb and pp collisions.
Nuclear modification factor of Y(2S) as a function of $y^{Y}_{CM}$. The global uncertainty arises from the integrated luminosity uncertainties in pPb and pp collisions.
Nuclear modification factor of Y(3S) as a function of $y^{Y}_{CM}$. The global uncertainty arises from the integrated luminosity uncertainties in pPb and pp collisions.
Nuclear modification factor of Y(1S) at forward and backward $y^{Y}_{CM}$ for pT < 6 GeV/c. The global uncertainty arises from the integrated luminosity uncertainties in pPb and pp collisions.
Nuclear modification factor of Y(2S) at forward and backward $y^{Y}_{CM}$ for pT < 6 GeV/c. The global uncertainty arises from the integrated luminosity uncertainties in pPb and pp collisions.
Nuclear modification factor of Y(3S) at forward and backward $y^{Y}_{CM}$ for pT < 6 GeV/c. The global uncertainty arises from the integrated luminosity uncertainties in pPb and pp collisions.
Nuclear modification factor of Y(1S) at forward and backward $y^{Y}_{CM}$ for 6 < pT < 30 GeV/c. The global uncertainty arises from the integrated luminosity uncertainties in pPb and pp collisions.
Nuclear modification factor of Y(2S) at forward and backward $y^{Y}_{CM}$ for 6 < pT < 30 GeV/c. The global uncertainty arises from the integrated luminosity uncertainties in pPb and pp collisions.
Nuclear modification factor of Y(3S) at forward and backward $y^{Y}_{CM}$ for 6 < pT < 30 GeV/c. The global uncertainty arises from the integrated luminosity uncertainties in pPb and pp collisions.
RFB of Y(1S) versus $N^{|\eta_{lab}|<2.4}_{tracks}$.
RFB of Y(2S) versus $N^{|\eta_{lab}|<2.4}_{tracks}$.
RFB of Y(3S) versus $N^{|\eta_{lab}|<2.4}_{tracks}$.
RFB of Y(1S) versus $E^{|\eta_{lab}|>4}_{T}$.
RFB of Y(2S) versus $E^{|\eta_{lab}|>4}_{T}$.
RFB of Y(3S) versus $E^{|\eta_{lab}|>4}_{T}$.
Nuclear modification factor of Y(1S), Y(2S), and Y(3S) integrated over pT and $y^{Y}_{CM}$. The global uncertainty arises from the integrated luminosity uncertainties in pPb and pp collisions.
A search for pairs of Higgs bosons produced via gluon and vector boson fusion is presented, focusing on the four b quark final state. The data sample consists of proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC, and corresponds to an integrated luminosity of 138 fb$^{-1}$. No deviation from the background-only hypothesis is observed. A 95% confidence level upper limit on the Higgs boson pair production cross section is observed at 3.9 times the standard model prediction for an expected value of 7.8. Constraints are also set on the modifiers of the Higgs field self-coupling, $\kappa_\lambda$, and of the coupling of two Higgs bosons to two vector bosons, $\kappa_\mathrm{2V}$. The observed (expected) allowed intervals at the 95% confidence level are $-$2.3 $\lt$ $\kappa_\lambda$ $\lt$ 9.4 ($-$5.0 $\lt$ $\kappa_\lambda$ $\lt$ 12.0) and $-$0.1 $\lt$ $\kappa_\mathrm{2V}$ $\lt$ 2.2 ($-$0.4 $\lt$ $\kappa_\mathrm{2V}$ $\lt$ 2.5). These are the most stringent observed constraints to date on the HH production cross section and on the $\kappa_\mathrm{2V}$ coupling.
Observed and expected 95% CL upper limits on cross section as a function of $\kappa_{\lambda}$ modifier
Observed and expected 95% CL upper limits on cross section as a function of $\kappa_{2V}$ modifier
An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying $\tau$ leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the LHC in 2016-2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845-1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vector-like $\tau$ lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125-150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12-1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vector-like doublet model, these constraints are the most stringent to date. For the vector-like singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations.
The minimum lepton $\mathrm{p_{T}}$ (GeV) distribution in 3L MisID CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The $\mathrm{S_{T}}$ (GeV) distribution in 3L WZ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The $\mathrm{DR_{min}}$ distribution in 3L Z$\mathrm{\gamma}$ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The distribution of $\mathrm{p_{T}^{miss}}$ (GeV) in 2L1T MisID CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The distribution of $\mathrm{M_{T}}$ (GeV) in 3L OnZ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The distribution of $\mathrm{H_{T}}$ (GeV) in 3L ttZ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
Distribution of BDT score from the SS-M ($\mathrm{B_{e}=B_{\mu}=B_{\tau}}$) BDT for the 3L+2L1T CR events for the combined 2016-2018 data set. The 3L+2L1T CR consists of the 3L OnZ, 3L Z$\mathrm{\gamma}$, and 2L1T MisID CRs. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The distribution of visible diboson $\mathrm{p_{T}}$ (GeV) in 4L ZZ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
Distribution of BDT score from the SS-M ($\mathrm{B_{e}=B_{\mu}=B_{\tau}}$) BDT for the 4L ZZ CR events for the combined 2016-2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The distribution of $\mathrm{L_{T}}$ in all seven multilepton channels for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton of $\mathrm{m_{\tau'}}$ = 1 TeV in the doublet scenario, before the fit, is also overlaid.
The distribution of $\mathrm{p_{T}^{miss}}$ in all seven multilepton channels for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermion of $\mathrm{m_{\Sigma}}$ = 1 TeV in the flavor-democratic scenario, before the fit, is also overlaid.
The distribution of $\mathrm{H_{T}}$ in all seven multilepton channels for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. For illustration, an example signal hypothesis for the production of the scalar leptoquark of $mathrm{m_{S}}$ = 1 TeV coupled to a top quark and a $\tau$ lepton, before the fit, is also overlaid.
The distribution of $\mathrm{M_{OSSF}}$ in channels with at least one light lepton pair (4L, 3L1T, 3L, 2L2T, and 2L1T) for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermion of $\mathrm{m_{\Sigma}}$ = 1 TeV in the flavor-democratic scenario, before the fit, is also overlaid.
The $\mathrm{N_{b}}$ distribution in 4L, 3L1T, 3L, 2L2T, 2L1T, 1L3T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The invariant mass distribution of the opposite-sign same-flavor ($\mathrm{M_{OSSF}}$) tau lepton pair distribution in 2L2T, 1L3T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The $\mathrm{M_{T}^{12}}$ distribution in 4L, 3L1T, 3L, 2L2T, 2L1T, 1L3T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The $\mathrm{N_{b}}$ distribution in 3L, 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{L_{T}}$ distribution in 3L, 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{p_{T}^{miss}}$ distribution in 3L, 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{H_{T}}$ distribution in 3L, 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{M_{OSSF}}$ distribution in 3L, and 2L1T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The invariant mass distribution of the opposite-sign different-flavor ($\mathrm{M_{OSDF}}$) light lepton pair distribution in 3L, and 2L1T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The invariant mass distribution of the opposite-sign same-flavor ($\mathrm{M_{OSSF}}$) tau lepton pair distribution in 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The invariant mass distribution of the opposite-sign different-flavor ($\mathrm{M_{OSDF}}$) light lepton and tau lepton pair distribution in 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{M_{T}^{1}}$ distribution in 3L, 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{M_{T}^{12}}$ distribution in 3L, 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The model independent fundamental table categories for the combined 2016-2018 data set, as defined in Table 1. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{N_{b}}$ distribution in 4L, 3L1T, 2L2T, and 1L3T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The SR distributions of the fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table in 3L channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table in 2L1T and 1L2T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table in 3L channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table in 2L1T and 1L2T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table in 4L, 3L1T, 2L2T, and 1L3T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table in 4L, 3L1T, 2L2T, and 1L3T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{S_{T}}$ table in 3L channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{S_{T}}$ table in 2L1T and 1L2T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{S_{T}}$ table in 3L channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{S_{T}}$ table in 2L1T and 1L2T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{S_{T}}$ table in 4L, 3L1T, 2L2T, and 1L3T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{S_{T}}$ table in 4L, 3L1T, 2L2T, and 1L3T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L 0B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L 1B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L 2B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 2L1T 0B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 2L1T 1B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 2L1T 2B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 1L2T channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. An example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid. For this category, the signal yield is negligible and is not visible in the figure.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L 0B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L 1B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L 2B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 2L1T 0B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 2L1T 1B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 2L1T 2B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 1L2T channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. An example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid. For this category, the signal yield is negligible and is not visible in the figure.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 4L 0B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 4L 1B/2B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L1T, 2L2T, and 1L3T channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 4L 0B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 4L 1B/2B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L1T, 2L2T, and 1L3T channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The VLL-L BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 200 GeV, before the fit, is also overlaid.
The VLL-L BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 200 GeV, before the fit, is also overlaid.
The VLL-L BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 200 GeV, before the fit, is also overlaid.
The VLL-M BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 400 GeV, before the fit, is also overlaid.
The VLL-M BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 400 GeV, before the fit, is also overlaid.
The VLL-M BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 400 GeV, before the fit, is also overlaid.
The VLL-H BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 900 GeV, before the fit, is also overlaid.
The VLL-H BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 900 GeV, before the fit, is also overlaid.
The VLL-H BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 900 GeV, before the fit, is also overlaid.
The VLL-L BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 200 GeV, before the fit, is also overlaid.
The VLL-L BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 200 GeV, before the fit, is also overlaid.
The VLL-L BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 200 GeV, before the fit, is also overlaid.
The VLL-M BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 400 GeV, before the fit, is also overlaid.
The VLL-M BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 400 GeV, before the fit, is also overlaid.
The VLL-M BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 400 GeV, before the fit, is also overlaid.
The VLL-H BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 900 GeV, before the fit, is also overlaid.
The VLL-H BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 900 GeV, before the fit, is also overlaid.
The VLL-H BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 900 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 850 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 850 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 850 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 850 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 850 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 850 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
Observed and expected upper limits at 95%% CL on the production cross section for the type-III seesaw fermions in the flavor-democratic scenario using the table schemes and the BDT regions of the SS-M and the SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDTs. To the left of the vertical dashed gray line, the limits are shown from the advanced $\mathrm{S_{T}}$ table, and to the right the limits are shown from the BDT regions.
Observed and expected upper limits at 95%% CL on the production cross section for the vector-like $\mathrm{\tau}$ leptons: doublet model. To the left of the vertical dashed gray line, the limits are shown from the advanced $\mathrm{S_{T}}$ table, and to the right the limits are shown from the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks: $\mathrm{B_{\tau}=1}$ and $\mathrm{\beta=1}$. To the left of the vertical dashed gray line, the limits are shown from the advanced $\mathrm{S_{T}}$ table, and to the right the limits are shown from the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks: $\mathrm{B_{e}=1}$ and $\mathrm{\beta=1}$. To the left of the vertical dashed gray line, the limits are shown from the advanced $\mathrm{S_{T}}$ table, and to the right the limits are shown from the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks: $\mathrm{B_{\mu}=1}$ and $\mathrm{\beta=1}$. To the left of the vertical dashed gray line, the limits are shown from the advanced $\mathrm{S_{T}}$ table, and to the right the limits are shown from the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\mathrm{\tau}$ leptons: singlet model. The limit is shown from the advanced $\mathrm{S_{T}}$ table for all masses.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\mu}=1}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\mu}=1}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\mu}=1}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\mu}=1}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=1}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=1}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=1}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=1}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\tau}=1}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\tau}=1}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\tau}=1}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\tau}=1}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\mu}=1}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\mu}=1}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\mu}=1}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\mu}=1}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{e}=1}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{e}=1}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{e}=1}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{e}=1}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\tau}=1}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\tau}=1}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\tau}=1}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\tau}=1}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the doublet scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the doublet scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the doublet scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the doublet scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the singlet scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the singlet scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the singlet scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed lower limits at 95% CL on the mass of the type-III seesaw fermions in the plane defined by $\mathrm{B_{e}}$ and $\mathrm{B_{\tau}}$, with the constraint that $\mathrm{B_{e}+B_{\mu}+B_{\tau}=1}$. These limits arise from the SS-H $\mathrm{B_{\tau}=1}$ BDT when $\mathrm{B_{\tau}\geq0.9}$, and by the SS-H $\mathrm{B_{e}+B_{\mu}+B_{\tau}=1}$ BDT for the other decay branching fraction combinations.
Median Expected lower limits at 95% CL on the mass of the type-III seesaw fermions in the plane defined by $\mathrm{B_{e}}$ and $\mathrm{B_{\tau}}$, with the constraint that $\mathrm{B_{e}+B_{\mu}+B_{\tau}=1}$. These limits arise from the SS-H $\mathrm{B_{\tau}=1}$ BDT when $\mathrm{B_{\tau}\geq0.9}$, and by the SS-H $\mathrm{B_{e}+B_{\mu}+B_{\tau}=1}$ BDT for the other decay branching fraction combinations.
Acceptance times efficiency values for the major SM backgrounds WZ, ZZ, and ttZ in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample. The statistical uncertainty on the acceptance times efficiency values is insignificant with respect to the quoted precision.
Acceptance times efficiency values with statistical uncertainty for the vector-like $\mathrm{\tau}$ lepton model in the doublet scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the vector-like $\mathrm{\tau}$ lepton model in the singlet scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the type-III seesaw fermions in the $\mathrm{(B_{e}=B_{\mu}=B_{\tau})}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the type-III seesaw fermions in the $\mathrm{(B_{e}=1)}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the type-III seesaw fermions in the $\mathrm{(B_{\mu}=1)}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the type-III seesaw fermions in the $\mathrm{B_{\tau}=1)}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\tau}=1}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{e}=1}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\mu}=1}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of $\tau$ leptons for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of $\tau$ leptons for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of $\tau$ leptons for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of $\tau$ leptons for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of $\tau$ leptons for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of $\tau$ leptons for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of $\tau$ leptons for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of $\tau$ leptons for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of $\tau$ leptons for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of $\tau$ leptons for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 1-prong $\tau_{h}$ in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.2. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 1-prong $\tau_{h}$ in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction ef