Search for the lepton flavor violating $\tau \to $ 3$\mu$ decay in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 853 (2024) 138633, 2024.
Inspire Record 2730742 DOI 10.17182/hepdata.145641

A search for the lepton flavor violating $\tau$$\to$ 3$\mu$ decay is performed using proton-proton collision events at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2017-2018, corresponding to an integrated luminosity of 97.7 fb$^{-1}$. Tau leptons produced in both heavy-flavor hadron and W boson decays are exploited in the analysis. No evidence for the decay is observed. The results of this search are combined with an earlier null result based on data collected in 2016 to obtain a total integrated luminosity of 131 fb$^{-1}$. The observed (expected) upper limits on the branching fraction $\mathcal{B}$($\tau$$\to$ 3$\mu$) at confidence levels of 90 and 95% are 2.9 $\times$ 10$^{-8}$ (2.4 $\times$ 10$^{-8}$) and 3.6 $\times$ 10$^{-8}$ (3.0 $\times$ 10$^{-8}$), respectively.

2 data tables

Expected and observed upper limits on the $\tau\to3\mu$ branching fraction at 90% of confidence level for different categories of the analyis.

Expected and observed upper limits on the $\tau\to3\mu$ branching fraction at 95% of confidence level for the Run2 combination.


Version 2
Observation of triple J/$\psi$ meson production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Nature Phys. 19 (2023) 338 338-350, 2023.
Inspire Record 1965242 DOI 10.17182/hepdata.114984

Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering - referred to as single-parton scattering - leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/$\psi$ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process - reconstructed through the decays of J/$\psi$ mesons into pairs of oppositely charged muons - with a statistical significance above five standard deviations. We measured the inclusive fiducial cross section to be 272 $^{+141}_{-104}$ (stat) $\pm$ 17 (syst) fb, and compared it to theoretical expectations for triple-J/$\psi$ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross sections, double- and triple-parton scattering are the dominant contributions for the measured process.

6 data tables

Kinematic properties of each one of the three \JPsi mesons selected in the 5? 6? signal events.

Dimuon invariant mass ($m$), proper decay-length ($L$), transverse momentum ($p_{T}$), rapidity ($y$), and azimuthal angle ($\phi$) of each of the three $J/\psi$ candidates measured in the six triple-$J/\psi$ events passing our selection criteria.

DPS effective cross section

More…

Measurement of the azimuthal anisotropy of $\Upsilon$(1S) and $\Upsilon$(2S) mesons in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 819 (2021) 136385, 2021.
Inspire Record 1801111 DOI 10.17182/hepdata.93880

The second-order Fourier coefficients ($v_2$) characterizing the azimuthal distribution of $\Upsilon$(1S) and $\Upsilon$(2S) mesons arising from PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV are studied. The $\Upsilon$ mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The data set corresponds to an integrated luminosity of 1.7 nb$^{-1}$. The scalar product method is used to extract the $v_2$ coefficients of the azimuthal distribution. Results are reported for the rapidity range $|y|$$\lt$ 2.4, with the transverse momentum 0 $\lt$$p_\mathrm{T}$$\lt$ 50 GeV/$c$, and in three centrality ranges of 10-30%, 30-50% and 50-90%. In contrast to the J/$\psi$ mesons, the measured $v_2$ values for the $\Upsilon$ mesons are found to be consistent with zero.

5 data tables

$v_{2}$ of $\Upsilon(\mathrm{1S})$ mesons as a function of collision centrality.

$v_{2}$ of $\Upsilon(\mathrm{1S})$ and $\Upsilon(\mathrm{2S})$ mesons integrated for 10-90% centrality range.

$v_{2}$ of $\Upsilon(\mathrm{1S})$ as a function of $p_{\mathrm{T}}$ in 10-90% centrality range.

More…

Measurement of the differential Drell-Yan cross section in proton-proton collisions at $ \sqrt{\mathrm{s}} $ = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2019) 059, 2019.
Inspire Record 1711625 DOI 10.17182/hepdata.88043

Measurements of the differential cross section for the Drell-Yan process, based on proton-proton collision data at a centre-of-mass energy of 13 TeV, collected by the CMS experiment, are presented. The data correspond to an integrated luminosity of 2.8 (2.3) fb$^{-1}$ in the dimuon (dielectron) channel. The total and fiducial cross section measurements are presented as a function of dilepton invariant mass in the range 15 to 3000 GeV, and compared with the perturbative predictions of the standard model. The measured differential cross sections are in good agreement with the theoretical calculations.

10 data tables

Summary of the systematic uncertainties (%) for the $ d\sigma / d{m}$ (pb/GeV) measurement in the dimuon channel. The column labelled "Total" corresponds to the quadratic sum of all the experimental sources, except for that Acceptance+PDF.

Summary of the systematic uncertainties (%) for the $ d\sigma / d{m}$ (pb/GeV) measurement in the dielectron channel. The column labelled "Total" corresponds to the quadratic sum of all the experimental sources, except for that Acceptance+PDF.

Summary of the measured values of $ d\sigma / d{m}$ (pb/GeV) in the dimuon channel with the statistical ($\delta_{\text{stat}}$), experimental ($\delta_{\text{exp}}$) and theoretical ($\delta_{\text{theo}}$) uncertainties, respectively. Here, $\delta_{\text{tot}}$ is the quadratic sum of the three components.

More…

Version 2
Measurement of nuclear modification factors of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) mesons in PbPb collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 790 (2019) 270-293, 2019.
Inspire Record 1674529 DOI 10.17182/hepdata.83200

The cross sections for $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, R$_\mathrm{AA}$, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, R$_\mathrm{AA}$($\Upsilon$(1S)) $>$ R$_\mathrm{AA}$($\Upsilon$(2S)) $>$ R$_\mathrm{AA}$($\Upsilon$(3S)) . The suppression of $\Upsilon$(1S) is larger than that seen at $\sqrt{s_{_\mathrm{NN}}} =$ 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the R$_\mathrm{AA}$ of $\Upsilon$(3S) integrated over $p_\mathrm{T}$ and rapidity is 0.094 at 95% confidence level, which is the strongest suppression observed for any hadron species in heavy ion collisions to date.

46 data tables

Differential cross sections of the Y(1S) meson as a function of pT for pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.

Differential cross sections of the Y(1S) meson as a function of pT for pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.

Differential cross sections of the Y(2S) meson as a function of pT for pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.

More…

Measurement of prompt and nonprompt charmonium suppression in PbPb collisions at 5.02 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 509, 2018.
Inspire Record 1644903 DOI 10.17182/hepdata.80816

The nuclear modification factors of J/$\psi$ and $\psi$(2S) mesons are measured in PbPb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} =$ 5.02 TeV. The analysis is based on PbPb and pp data samples collected by CMS at the LHC in 2015, corresponding to integrated luminosities of 464 $\mu$b$^{-1}$ and 28 pb$^{-1}$, respectively. The measurements are performed in the dimuon rapidity range of $|y| <$ 2.4 as a function of centrality, rapidity, and transverse momentum (p$_\mathrm{T}$) from p$_\mathrm{T}=$ 3 GeV/$c$ in the most forward region and up to 50 GeV/$c$. Both prompt and nonprompt (coming from b hadron decays) mesons are observed to be increasingly suppressed with centrality, with a magnitude similar to the one observed at $\sqrt{s_{\mathrm{NN}}}=$ 2.76 TeV for the two J/$\psi$ meson components. No dependence on rapidity is observed for either prompt or nonprompt J/$\psi$ mesons. An indication of a lower prompt J/$\psi$ meson suppression at p$_\mathrm{T} >$ 25 GeV/$c$ is seen with respect to that observed at intermediate p$_\mathrm{T}$. The prompt $\psi$(2S) meson yield is found to be more suppressed than that of the prompt J/$\psi$ mesons in the entire p$_\mathrm{T}$ range.

32 data tables

Fraction of J/psi mesons coming from the decay of b hadrons, i.e. nonprompt J/psi meson fraction, as a function of dimuon pT for pp and PbPb collisions, for all centralities.

Fraction of J/psi mesons coming from the decay of b hadrons, i.e. nonprompt J/psi meson fraction, as a function of dimuon rapidity for pp and PbPb collisions, for all centralities.

Differential cross section of prompt J/psi mesons as a function of dimuon pT in pp and PbPb collisions. The PbPb cross sections are normalised by TAA for direct comparison. Global uncertainties arise from the integrated luminosity uncertainty in pp collisions, and the number of minimum bias events and TAA uncertainties for PbPb collisions.

More…

Measurement of quarkonium production cross sections in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 780 (2018) 251-272, 2018.
Inspire Record 1633431 DOI 10.17182/hepdata.85744

Differential production cross sections of J/$\psi$ and $\psi$(2S) charmonium and $\Upsilon$(nS) (n = 1, 2, 3) bottomonium states are measured in proton-proton collisions at $\sqrt{s} =$ 13 TeV, with data collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 2.3 fb$^{-1}$ for the J/$\psi$ and 2.7 fb$^{-1}$ for the other mesons. The five quarkonium states are reconstructed in the dimuon decay channel, for dimuon rapidity $|y| <$ 1.2. The double-differential cross sections for each state are measured as a function of $y$ and transverse momentum, and compared to theoretical expectations. In addition, ratios are presented of cross sections for prompt $\psi$(2S) to J/$\psi$, $\Upsilon$(2S) to $\Upsilon$(1S), and $\Upsilon$(3S) to $\Upsilon$(1S) production.

12 data tables

Double-differential cross section times the dimuon branching fraction of the J/psi meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

Double-differential cross section times the dimuon branching fraction of the psi(2S) meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

Double-differential cross section times the dimuon branching fraction of the Y(1S) meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

More…

Search for the dimuon decay of the Higgs boson in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 119 (2017) 051802, 2017.
Inspire Record 1599399 DOI 10.17182/hepdata.78379

A search for the dimuon decay of the Higgs boson was performed using data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected with the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider. No significant excess is observed above the expected background. The observed (expected) upper limit on the cross section times branching ratio is 3.0 (3.1) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125 GeV. When combined with the $pp$ collision data at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV, the observed (expected) upper limit is 2.8 (2.9) times the Standard Model prediction.

3 data tables

Measurement of signal strength

Event yields for the expected signal (S) and background (B) processes, and numbers of the observed data events in different categories. The full widths at half maximum (FWHM) of the signal $m_{μμ}$ distributions are also shown. In each category, the event yields are counted within an $m_{μμ}$ interval, which is centered at the simulated signal peak and contains 90% of the expected signal events. The expected signal event yields are normalized to $36.1 fb^-1$. The background in each category is normalized to the observed data yield, while the relative fractions between the different processes are fixed to the SM predictions.

The 95% CL upper limit on signal strength


Version 2
Suppression of Upsilon(1S), Upsilon(2S) and Upsilon(3S) production in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 770 (2017) 357-379, 2017.
Inspire Record 1495866 DOI 10.17182/hepdata.77220

The production yields of Upsilon(1S), Upsilon(2S), and Upsilon(3S) quarkonium states are measured through their decays into muon pairs in the CMS detector, in PbPb and pp collisions at the centre-of-mass energy per nucleon pair of 2.76 TeV. The data correspond to integrated luminosities of 166 inverse microbarns and 5.4 inverse picobarns for PbPb and pp collisions, respectively. Differential production cross sections are reported as functions of Upsilon rapidity y up to 2.4, and transverse momentum pT up to 20 GeV/c. A strong centrality-dependent suppression is observed in PbPb relative to pp collisions, by factors of up to approximately 2 and 8, for the Upsilon(1S) and Upsilon(2S) states, respectively. No significant dependence of this suppression is observed as a function of y or pT. The Upsilon(3S) state is not observed in PbPb collisions, which corresponds to a suppression for the centrality-integrated data by at least a factor of approximately 7 at a 95% confidence level. The observed suppression is in agreement with theoretical scenarios modeling the sequential melting of quarkonium states in a quark gluon plasma.

34 data tables

Differential cross section for Y(1S) states as a function of their transverse momentum and per unit of rapidity in pp collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% are not displayed.

Differential cross section for Y(1S) states as a function of their transverse momentum and per unit of rapidity in pp collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% are not displayed.

Differential cross section for Y(2S) states as a function of their transverse momentum and per unit of rapidity in pp collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% are not displayed.

More…

Relative modification of prompt psi(2S) and J/psi yields from pp to PbPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 118 (2017) 162301, 2017.
Inspire Record 1495840 DOI 10.17182/hepdata.77102

The relative modification of the prompt psi(2S) and J/psi yields from pp to PbPb collisions, at the center of mass energy of 5.02 TeV per nucleon pair, is presented. The analysis is based on pp and PbPb data samples collected by the CMS experiment at the LHC in 2015, corresponding to integrated luminosities of 28.0 inverse picobarns and 464 inverse microbarns, respectively. The double ratio of measured yields of prompt charmonia reconstructed through their decays into muon pairs, (N[psi(2S)]/N[J/psi])[PbPb] / (N[psi(2S)]/N[J/psi])[pp], is determined as a function of PbPb collision centrality and charmonium transverse momentum pt, in two kinematic intervals: abs(y) < 1.6 covering 6.5 < pt < 30 GeV/c and 1.6 < abs(y) < 2.4 covering 3 < pt < 30 GeV/c. The centrality-integrated double ratios are 0.36 +/- 0.08 (stat) +/-0.05 (syst) in the first interval and 0.24 +/- 0.22 (stat) +/- 0.09 (syst) in the second. The double ratio is lower than unity in all the measured bins, suggesting that the psi(2S) yield is more suppressed than the J/psi yield in the explored phase space.

10 data tables

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the midrapidity analysis bin.

95% CL intervals on the double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the midrapidity analysis bin.

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the forward rapidity analysis bin.

More…

Measurements of $Z\gamma$ and $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 112002, 2016.
Inspire Record 1448301 DOI 10.17182/hepdata.72823

The production of $Z$ bosons with one or two isolated high-energy photons is studied using $pp$ collisions at $\sqrt{s}$ = 8 TeV. The analyses use a data sample with an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS detector during the 2012 LHC data taking. The $Z\gamma$ and $Z\gamma\gamma$ production cross sections are measured with leptonic ($e^{+}e^{-}$, $\mu^{+}\mu^{-}$, $\nu\bar{\nu}$) decays of the $Z$ boson, in extended fiducial regions defined in terms of the lepton and photon acceptance. They are then compared to cross-section predictions from the Standard Model, where the sources of the photons are radiation off initial-state quarks and radiative $Z$-boson decay to charged leptons, and from fragmentation of final-state quarks and gluons into photons. The yields of events with photon transverse energy $E_T >$ 250 GeV from $\ell^{+}\ell^{-}\gamma$ events and with $E_T >$ 400 GeV from $\nu\bar{\nu}\gamma$ events are used to search for anomalous triple gauge-boson couplings $ZZ\gamma$ and $Z\gamma\gamma$. The yields of events with diphoton invariant mass $m_{\gamma\gamma} >$ 200 GeV from $\ell^{+}\ell^{-}\gamma\gamma$ events and with $m_{\gamma\gamma} > $ 300 GeV from $\nu\bar{\nu}\gamma\gamma$ events are used to search for anomalous quartic gauge-boson couplings $ZZ\gamma\gamma$ and $Z\gamma\gamma\gamma$. No deviations from Standard Model predictions are observed and limits are placed on parameters used to describe anomalous triple and quartic gauge-boson couplings.

11 data tables

Measured integrated cross sections for the $Z\gamma$ process for charged lepton final states at $\sqrt{s} = 8$ TeV in the extended fiducial regions defined in the paper, table 5. The parton-to-particle correction factors are also shown, which are defined as the ratio of the cross sections at parton-level to the cross sections at particle-level.

Measured integrated cross sections for the $Z\gamma$ process for neutrino final states at $\sqrt{s} = 8$ TeV in the extended fiducial regions defined in the paper, table 5. The parton-to-particle correction factors are also shown, which are defined as the ratio of the cross sections at parton-level to the cross sections at particle-level.

Measured integrated cross sections for the $Z\gamma\gamma$ process for charged lepton final states at $\sqrt{s} = 8$ TeV in the extended fiducial regions defined in the paper, table 5. The parton-to-particle correction factors are also shown, which are defined as the ratio of the cross sections at parton-level to the cross sections at particle-level.

More…

Measurement of the $ZZ$ Production Cross Section in $pp$ Collisions at $\sqrt{s}$ = 13 TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 116 (2016) 101801, 2016.
Inspire Record 1409923 DOI 10.17182/hepdata.70866

The $ZZ$ production cross section in proton-proton collisions at 13 TeV center-of-mass energy is measured using 3.2 fb$^{-1}$ of data recorded with the ATLAS detector at the Large Hadron Collider. The considered $Z$ boson candidates decay to an electron or muon pair of mass 66-116 GeV. The cross section is measured in a fiducial phase space reflecting the detector acceptance. It is also extrapolated to a total phase space for $Z$ bosons in the same mass range and of all decay modes, giving $16.7^{+2.2}_{-2.0}$(stat.)$^{+0.9}_{-0.7}$(syst.)$^{+1.0}_{-0.7}$(lumi.) pb. The results agree with standard model predictions.

5 data tables

Measured fiducial cross section in the $e^+e^-e^+e^-$ channel. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

Measured fiducial cross section in the $e^+e^-\mu^+\mu^-$ channel. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

Measured fiducial cross section in the $\mu^+\mu^-\mu^+\mu^-$ channel. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

More…

Measurement of the differential cross-sections of prompt and non-prompt production of $J/\psi$ and $\psi(2\mathrm{S})$ in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 283, 2016.
Inspire Record 1409298 DOI 10.17182/hepdata.72721

The production rates of prompt and non-prompt $J/\psi$ and $\psi(2\mathrm{S})$ mesons are measured using 2.1 $fb^{-1}$ and 11.4 $fb^{-1}$ of data collected with the ATLAS experiment at the LHC, in proton-proton collisions at $\sqrt{s}=7$ and 8 TeV respectively. Production cross-sections for both prompt and non-prompt production sources, ratios of $\psi(2\mathrm{S})$ to $J/\psi$ production, and fractions of non-prompt to inclusive production for $J/\psi$ and $\psi(2\mathrm{S})$ are measured double-differentially as a function of meson $p_{T}$ and rapidity. These measurements are made in a restricted fiducial volume and also corrected for geometrical acceptance after which they are compared to a variety of theoretical predictions.

40 data tables

Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 7 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 8 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of non-prompt $J/\psi$ decaying to a muon pair for 7 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

More…

Measurement of the transverse momentum and $\phi^*_{\eta}$ distributions of Drell-Yan lepton pairs in proton-proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 291, 2016.
Inspire Record 1408516 DOI 10.17182/hepdata.71339

Distributions of transverse momentum $p_T^{ll}$ and the angular variable $\phi^*_\eta$ of Drell--Yan lepton pairs are measured in 20.3 fb$^{-1}$ of proton--proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in proton--proton collisions at $\sqrt{s}=7$ TeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of $\phi^*_\eta < 1$ the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of $\phi^*_\eta$ this is not generally the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of $p_T^{ll}$ and the fixed-order prediction of DYNNLO falls below the data at high values of $p_T^{ll}$. ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the $\phi^*_\eta$ and $p_T^{ll}$ distributions as a function of lepton-pair mass and rapidity.

41 data tables

Fiducial cross sections at Born level in the electron- and muon-pair channels as well as the combined value. The statistical and systematic uncertainties are given as a percentage of the cross section. An additional uncertainty of 2.8% on the integrated luminosity, which is fully correlated between channels and among all $m_{\ell\ell}$ bins, pertains to these measurements. The individual uncertainty sources after the combination are not necessarily orthogonal and also do not include uncertainties uncorrelated between bins of $m_{\ell\ell}$. Therefore their quadratic sum may not give the total systematic uncertainty.

The values of $(1/\sigma)\,\mathrm{d}\sigma/\mathrm{d}\phi^*_{\eta}$ in each bin of $\phi^*_{\eta}$ for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region $46\textrm{ GeV} \leq m_{\ell\ell} < 66\textrm{ GeV},\ 0 \leq |y_{\ell\ell}| < 0.8$. The associated statistical and systematic (both uncorrelated and correlated between bins of $\phi^*_{\eta}$) are provided in percentage form.

The values of $(1/\sigma)\,\mathrm{d}\sigma/\mathrm{d}\phi^*_{\eta}$ in each bin of $\phi^*_{\eta}$ for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region $46\textrm{ GeV} \leq m_{\ell\ell} < 66\textrm{ GeV},\ 0.8 \leq |y_{\ell\ell}| < 1.6$. The associated statistical and systematic (both uncorrelated and correlated between bins of $\phi^*_{\eta}$) are provided in percentage form.

More…

Search for neutral MSSM Higgs bosons decaying to $\mu^{+} \mu^{-}$ in pp collisions at $ \sqrt{s} =$ 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 752 (2016) 221-246, 2016.
Inspire Record 1386854 DOI 10.17182/hepdata.70526

A search for neutral Higgs bosons predicted in the minimal supersymmetric standard model (MSSM) for mu+ mu- decay channels is presented. The analysis uses data collected by the CMS experiment at the LHC in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.3 inverse femtobarns, respectively. The search is sensitive to Higgs bosons produced through the gluon fusion process or in association with a bb quark pair. No statistically significant excess is observed in the mu+ mu- mass spectrum. Results are interpreted in the framework of several benchmark scenarios, and the data are used to set an upper limit on the MSSM parameter tan(beta) as a function of the mass of the pseudoscalar A boson in the range from 115 to 300 GeV. Model independent upper limits are given for the product of the cross section and branching fraction for gluon fusion and b quark associated production. They are the most stringent limits obtained to date in this channel.

3 data tables

The 95% CL upper limit on tan B as a function of mA, after combining the data from the two event categories at the two centre-of-mass energies (7 and 8 TeV). The results are obtained in the framework of the mh-mod+ benchmark scenario.

The 95% CL limit on the product of the cross section and the decay branching fraction to two muons as a function of mPHI, obtained from a model independent analysis of the data. The results refer to b quark associated production, obtained using data collected at swrt(s) = 8 TeV.

The 95% CL limit on the product of the cross section and the decay branching fraction to two muons as a function of mPHI, obtained from a model independent analysis of the data. The results refer to gluon-fusion production, obtained using data collected at swrt(s) = 8 TeV.


Angular analysis of the decay B0 to K*0 mu mu from pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 753 (2016) 424-448, 2016.
Inspire Record 1385600 DOI 10.17182/hepdata.17057

The angular distributions and the differential branching fraction of the decay B0 to K*0(892) mu mu are studied using data corresponding to an integrated luminosity of 20.5 inverse femtobarns collected with the CMS detector at the LHC in pp collisions at sqrt(s) = 8 TeV. From 1430 signal decays, the forward-backward asymmetry of the muons, the K*0(892) longitudinal polarization fraction, and the differential branching fraction are determined as a function of the dimuon invariant mass squared. The measurements are among the most precise to date and are in good agreement with standard model predictions.

2 data tables

The measured values of signal yield, FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared. The (FL,AFB) correlation factors are also shown.

The measured values of FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared, combining the 7 TeV and 8 TeV results.


Measurement of exclusive $\gamma\gamma\rightarrow \ell^+\ell^-$ production in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 749 (2015) 242-261, 2015.
Inspire Record 1377585 DOI 10.17182/hepdata.69286

This Letter reports a measurement of the exclusive $\gamma\gamma\rightarrow \ell^+\ell^- (\ell=e, \mu)$ cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment at the LHC, based on an integrated luminosity of $4.6$ fb$^{-1}$. For the electron or muon pairs satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to extract the fiducial cross-sections. The cross-section in the electron channel is determined to be $\sigma_{\gamma\gamma\rightarrow e^+e^-}^{\mathrm{excl.}} = 0.428 \pm 0.035 (\mathrm{stat.}) \pm 0.018 (\mathrm{syst.})$ pb for a phase-space region with invariant mass of the electron pairs greater than 24 GeV, in which both electrons have transverse momentum $p_\mathrm{T}>12$ GeV and pseudorapidity $|\eta|<2.4$. For muon pairs with invariant mass greater than 20 GeV, muon transverse momentum $p_\mathrm{T}>10$ GeV and pseudorapidity $|\eta|<2.4$, the cross-section is determined to be $\sigma_{\gamma\gamma\rightarrow \mu^+\mu^- }^{\mathrm{excl.}} = 0.628 \pm 0.032 (\mathrm{stat.}) \pm 0.021 (\mathrm{syst.})$ pb. When proton absorptive effects due to the finite size of the proton are taken into account in the theory calculation, the measured cross-sections are found to be consistent with the theory prediction.

10 data tables

Fiducial cross-section SIG for the exclusive e+ e- and mu+ mu- production.

Ratios of the number of observed to the number of expected events based on the MC predictions (R) for the exclusive e+ e- and mu+ mu- production.

Detector response matrix (PROB) for the acoplanarity variable (ACO) for e+ e- channel (empty bins are not reported).

More…

Angular coefficients of Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ as a function of transverse momentum and rapidity

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 750 (2015) 154-175, 2015.
Inspire Record 1359451 DOI 10.17182/hepdata.69285

Measurements of the five most significant angular coefficients, A[0] through A[4], for Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ are presented as a function of the transverse momentum and rapidity of Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7 inverse femtobarns. These measurements provide comprehensive information about Z boson production mechanisms, and are compared to QCD predictions at leading order, next-to-leading order, and next-to-next-to-leading order in perturbation theory.

2 data tables

The five angular coefficients A0 to A4 and A0-A2 in bins of qT for |y| < 1.

The five angular coefficients A0 to A4 and A0-A2 in bins of qT for 1 < |y| < 2.1.


Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 749 (2015) 187-209, 2015.
Inspire Record 1359450 DOI 10.17182/hepdata.68945

We present a measurement of the Z boson differential cross section in rapidity and transverse momentum using a data sample of pp collision events at a centre-of-mass energy sqrt(s)=8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The Z boson is identified via its decay to a pair of muons. The measurement provides a precision test of quantum chromodynamics over a large region of phase space. In addition, due to the small experimental uncertainties in the measurement the data has the potential to constrain the gluon parton distribution function in the kinematic regime important for Higgs boson production via gluon fusion. The results agree with the next-to-next-to-leading-order predictions computed with the FEWZ program. The results are also compared to the commonly used leading-order MADGRAPH and next-to-leading-order POWHEG generators.

4 data tables

Measured double differential fiducial cross section normalised to the inclusive fiducial cross section. The uncertainty indicates the total experimental uncertainties (statistical and systematic added in quadrature).

Measured absolute double differential fiducial cross section. The uncertainty indicates the total experimental uncertainties (statistical and systematic added in quadrature).

Covariance matrix of total experimental uncertainties (statistical and systematic uncertainties added in quadrature) of double differential fiducial cross section normalised to the inclusive fiducial cross section. The bin index is PT_i + 10*y_j.

More…

Search for a Heavy Neutral Particle Decaying to $e\mu$, $e\tau$, or $\mu\tau$ in $pp$ Collisions at $\sqrt{s}=8$ TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 115 (2015) 031801, 2015.
Inspire Record 1352821 DOI 10.17182/hepdata.68482

This Letter presents a search for a heavy neutral particle decaying into an opposite-sign different-flavor dilepton pair, $e^\pm \mu^\mp$, $e^\pm \tau^\mp$, or $\mu^\pm \tau^\mp$ using 20.3 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 8$ TeV collected by the ATLAS detector at the LHC. The numbers of observed candidate events are compatible with the Standard Model expectations. Limits are set on the cross section of new phenomena in two scenarios: the production of $\tilde{\nu}_{\tau}$ in $R$-parity-violating supersymmetric models and the production of a lepton-flavor-violating $Z'$ vector boson.

24 data tables

Observed and predicted $e\mu$ invariant mass distributions.

The expected invariant mass distribution of signal Z'@0.75TeV and $\tilde{\nu}_{\tau}$@1TeV. The arbitrary choice of couplings are: $\lambda_{311}^{'}=0.11$ and $\lambda_{i3k}=0.07$ for $\tilde{\nu}_{\tau}$, $Q_{ll^{'}}=1$ for Z' .

Observed and predicted $e\tau$ invariant mass distributions.

More…

A study of final-state radiation in decays of Z bosons produced in pp collisions at 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.D 91 (2015) 092012, 2015.
Inspire Record 1346843 DOI 10.17182/hepdata.67634

The differential cross sections for the production of photons in Z to mu+ mu- gamma decays are presented as a function of the transverse energy of the photon and its separation from the nearest muon. The data for these measurements were collected with the CMS detector and correspond to an integrated luminosity of 4.7 inverse femtobarns of pp collisions at sqrt(s) = 7 TeV delivered by the CERN LHC. The cross sections are compared to simulations with POWHEG and PYTHIA, where PYTHIA is used to simulate parton showers and final-state photons. These simulations match the data to better than 5%.

8 data tables

Measured differential cross section dsigma/dET in pb/GeV. For the data values, the first uncertainty is statistical and the second is systematic. For the theory values, the uncertainty combines statistical, PDF, and renormalization/factorization scale components.

Measured differential cross section dsigma/dET in pb/GeV given (0.05 < DeltaR < 0.5). For the data values, the first uncertainty is statistical and the second is systematic. For the theory values, the uncertainty combines statistical, PDF, and renormalization/factorization scale components.

Measured differential cross section dsigma/dET in pb/GeV given (0.5 < DeltaR < 3.0). For the data values, the first uncertainty is statistical and the second is systematic. For the theory values, the uncertainty combines statistical, PDF, and renormalization/factorization scale components.

More…

Measurement of the Z gamma production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 04 (2015) 164, 2015.
Inspire Record 1345354 DOI 10.17182/hepdata.66985

The cross section for the production of Z gamma in proton-proton collisions at 8 TeV is measured based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 19.5 inverse femtobarns. Events with an oppositely-charged pair of muons or electrons together with an isolated photon are selected. The differential cross section as a function of the photon transverse momentum is measured inclusively and exclusively, where the exclusive selection applies a veto on central jets. The observed cross sections are compatible with the expectations of next-to-next-to-leading-order quantum chromodynamics. Limits on anomalous triple gauge couplings of Z Z gamma and Z gamma gamma are set that improve on previous experimental results obtained with the charged lepton decay modes of the Z boson.

4 data tables

Inclusive fiducial cross sections in bins of pT(gamma) with statistical, systematic, and luminosity uncertainties, respectivley. Results are not divided by bin-widths. The last bin is the cross section for pT(gamma) > 120 GeV. Combined result of electron and muon channels.

Fiducial cross sections with jet-veto in bins of pT(gamma) with statistical, systematic, and luminosity uncertainties, respectivley. Results are not divided by bin-widths. The last bin is the cross section for pT(gamma) > 120 GeV. Combined result of electron and muon channels.

Ratio of fiducial cross section with jet-veto and the inclusive cross section in bins of pT(gamma). The last bin is the cross section for pT(gamma) > 120 GeV. Combined result of electron and muon channels.

More…

Measurement of J/psi and psi(2S) prompt double-differential cross sections in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 114 (2015) 191802, 2015.
Inspire Record 1345023 DOI 10.17182/hepdata.66886

The double-differential cross sections of promptly produced J/psi and psi(2S) mesons are measured in pp collisions at sqrt(s) = 7 TeV, as a function of transverse momentum pt and absolute rapidity abs(y). The analysis uses J/psi and psi(2S) dimuon samples collected by CMS, corresponding to integrated luminosities of 4.55 and 4.90 inverse femtobarns, respectively. The results are based on a two-dimensional analysis of the dimuon invariant mass and decay length, and extend to pt = 120 and 100 GeV for the J/psi and psi(2S), respectively, when integrated over the interval abs(y) < 1.2. The ratio of the psi(2S) to J/psi cross sections is also reported for abs(y) < 1.2, over the range 10 < pt < 100 GeV. These are the highest pt values for which the cross sections and ratio have been measured.

5 data tables

J/psi double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.

psi(2S) double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.

J/psi double-differential cross section times branching fraction and the corresponding scaling factors to obtain the cross sections for different polarization scenarios (azimuthal polarization parameter in the center of mass helicity frame lambda_theta^HX = +1, -1, +0.1) as a function of pT for |y| < 1.2.

More…

Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 299, 2015.
Inspire Record 1343107 DOI 10.17182/hepdata.68783

Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb$^{-1}$ of $\sqrt{s}=8$ TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with $p_T > 120$ GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between $E_T^{miss} > 150$ GeV and $E_T^{miss} > 700$ GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with large extra spatial dimensions, pair production of weakly interacting dark matter candidates, and production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.

45 data tables

Distributions of the measured transverse mass distribution of the identified muon in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.

Measured $E_{T}^{miss}$ distribution in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.

Measured leading jet $p_{T}$ distribution in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.

More…

Measurements of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 749 (2015) 14-34, 2015.
Inspire Record 1342266 DOI 10.17182/hepdata.64486

Differential cross sections as a function of transverse momentum pt are presented for the production of Y(nS) (n = 1, 2, 3) states decaying into a pair of muons. Data corresponding to an integrated luminosity of 4.9 inverse femtobarns in pp collisions at sqrt(s) = 7 TeV were collected with the CMS detector at the LHC. The analysis selects events with dimuon rapidity abs(y) < 1.2 and dimuon transverse momentum in the range 10 < pt < 100 GeV. The measurements show a transition from an exponential to a power-law behavior at pt ~ 20 GeV for the three Y states. Above that transition, the Y spectrum is significantly harder than that of the Y(1S) and Y(2S). The ratios of the Y(3S) and Y(2S) differential cross sections to the Y(1S) cross section show a rise as pt increases at low pt, then become flatter at higher pt.

15 data tables

The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $0 < |y| < 0.6$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.

The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $0.6 < |y| < 1.2$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.

The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $|y| < 1.2$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.

More…

Measurements of differential and double-differential Drell-Yan cross sections in proton-proton collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 147, 2015.
Inspire Record 1332509 DOI 10.17182/hepdata.69869

Measurements of the differential and double-differential Drell-Yan cross sections in the dielectron and dimuon channels are presented. They are based on proton-proton collision data at sqrt(s) = 8 TeV recorded with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measured inclusive cross section in the Z peak region (60-120 GeV), obtained from the combination of the dielectron and dimuon channels, is 1138 +/- 8 (exp) +/- 25 (theo) +/- 30 (lumi) pb, where the statistical uncertainty is negligible. The differential cross section d(sigma)/d(m) in the dilepton mass range 15 to 2000 GeV is measured and corrected to the full phase space. The double-differential cross section d2(sigma)/d(m)d(abs(y)) is also measured over the mass range 20 to 1500 GeV and absolute dilepton rapidity from 0 to 2.4. In addition, the ratios of the normalized differential cross sections measured at sqrt(s) = 7 and 8 TeV are presented. These measurements are compared to the predictions of perturbative QCD at next-to-leading and next-to-next-to-leading (NNLO) orders using various sets of parton distribution functions (PDFs). The results agree with the NNLO theoretical predictions computed with FEWZ 3.1 using the CT10 NNLO and NNPDF2.1 NNLO PDFs. The measured double-differential cross section and ratio of normalized differential cross sections are sufficiently precise to constrain the proton PDFs.

15 data tables

Absolute Drell-Yan cross section measurements in the Z peak region (60 < m < 120 GeV). The uncertainties in the measurements include the experimental and theoretical systematic sources and the uncertainty in the integrated luminosity. The statistical component is negligible.

The Drell-Yan differential pre-FSR cross section D(SIG)/DM as measured in the combined dilepton channel for the full phase space. Theoretical uncertainty on acceptance is included.

The Drell-Yan pre-FSR dilepton rapidity distribution D(SIG)/DABS(YRAP) within the detector acceptance, for the mass bin 20-30 GeV, as measured in the combined dilepton channel.

More…

Measurement of prompt psi(2S) to J/psi yield ratios in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 113 (2014) 262301, 2014.
Inspire Record 1320775 DOI 10.17182/hepdata.66548

The ratio between the prompt psi(2S) and J/psi yields, reconstructed via their decays into muon pairs, is measured in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV. The analysis is based on PbPb and pp data samples collected by CMS at the LHC, corresponding to integrated luminosities of 150 inverse microbarns and 5.4 inverse picobarns, respectively. The double ratio of measured yields, (N[psi(2S)]/N[J/psi])[PbPb] / (N[psi(2S)]/ N[J/psi])[pp], is computed in three PbPb collision centrality bins and two kinematic ranges: one at midrapidity, abs(y) < 1.6, covering the transverse momentum range 6.5 < pt < 30 GeV/c, and the other at forward rapidity, 1.6 < abs(y) < 2.4, extending to lower pt values, 3 < pt < 30 GeV/c. The centrality-integrated double ratio changes from 0.45 +/- 0.13 (stat) +/- 0.07 (syst) in the first range to 1.67 +/- 0.34 (stat) +/- 0.27 (syst) in the second. This difference is most pronounced in the most central collisions.

4 data tables

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of centrality, for the midrapidity analysis bin.

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of centrality, for the forward rapidity analysis bin.

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, integrated over centrality, for the midrapidity and forward rapidity analysis bins.

More…

Version 2
Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3195, 2014.
Inspire Record 1315949 DOI 10.17182/hepdata.70547

A measurement of charged-particle distributions sensitive to the properties of the underlying event is presented for an inclusive sample of events containing a Z-boson , decaying to an electron or muon pair. The measurement is based on data collected using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 7 TeV with an integrated luminosity of $4.6$ fb$^{-1}$. Distributions of the charged particle multiplicity and of the charged particle transverse momentum are measured in regions of azimuthal angle defined with respect to the Z-boson direction. The measured distributions are compared to similar distributions measured in jet events, and to the predictions of various Monte Carlo generators implementing different underlying event models.

132 data tables

Towards scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.

Transverse scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.

Away scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.

More…

Measurement of the production cross-section of $\psi(2S)\to J/\psi(\to\mu^+\mu^-)\pi^+\pi^-$ in $pp$ collisions at $\sqrt{s}=7$ TeV at ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 079, 2014.
Inspire Record 1307103 DOI 10.17182/hepdata.69188

The prompt and non-prompt production cross-sections for $\psi(2S)$ mesons are measured using 2.1 fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. The measurement exploits the $\psi(2S)\to J/\psi(\to\mu^+\mu^-)\pi^+\pi^-$ decay mode, and probes $\psi(2S)$ mesons with transverse momenta in the range $10\leq p_T<100$ GeV and rapidity $|y|<2.0$. The results are compared to other measurements of $\psi(2S)$ production at the LHC and to various theoretical models for prompt and non-prompt quarkonium production.

9 data tables

Non-prompt $\psi(2\mathrm{S})$ production fraction as a function of $\psi(2\mathrm{S})$ $p_{\rm T}$ for $\psi(2\mathrm{S})$ rapidity interval of $0\leq |y| < 0.75$. The first uncertainty is statistical, the second is systematic. Spin-alignment uncertainties are not included.

Non-prompt $\psi(2\mathrm{S})$ production fraction as a function of $\psi(2\mathrm{S})$ $p_{\rm T}$ for $\psi(2\mathrm{S})$ rapidity interval of $0.75\leq |y| < 1.5$. The first uncertainty is statistical, the second is systematic. Spin-alignment uncertainties are not included.

Non-prompt $\psi(2\mathrm{S})$ production fraction as a function of $\psi(2\mathrm{S})$ $p_{\rm T}$ for $\psi(2\mathrm{S})$ rapidity interval of $1.5\leq |y| < 2$. The first uncertainty is statistical, the second is systematic. Spin-alignment uncertainties are not included.

More…

Search for contact interactions and large extra dimensions in the dilepton channel using proton-proton collisions at $\sqrt{s}$ = 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3134, 2014.
Inspire Record 1305430 DOI 10.17182/hepdata.65760

A search is conducted for non-resonant new phenomena in dielectron and dimuon final states, originating from either contact interactions or large extra spatial dimensions. The LHC 2012 proton-proton collision dataset recorded by the ATLAS detector is used, corresponding to 20 fb$^{-1}$ at $\sqrt{s}$ = 8 TeV. The dilepton invariant mass spectrum is a discriminating variable in both searches, with the contact interaction search additionally utilizing the dilepton forward-backward asymmetry. No significant deviations from the Standard Model expectation are observed. Lower limits are set on the $\ell\ell q q$ contact interaction scale $\Lambda$ between 15.4 TeV and 26.3 TeV, at the 95% credibility level. For large extra spatial dimensions, lower limits are set on the string scale $M_{S}$ between 3.2 TeV to 5.0 TeV.

10 data tables

Reconstructed dielectron mass distributions for data and the SM background estimate.

Reconstructed dimuon mass distributions for data and the SM background estimate.

Reconstructed $\cos\theta^*$ distributions for data and the SM background estimate in the dielectron channel.

More…

Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 20 fb$^{-1}$ of $\sqrt{s}$=8 TeV proton-proton collision data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 103, 2014.
Inspire Record 1304458 DOI 10.17182/hepdata.65525

A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, at least one hadronically decaying tau lepton and zero or one additional light leptons (electron/muon), has been performed using 20.3 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 8$ TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in the various signal regions and 95% confidence level upper limits on the visible cross section for new phenomena are set. The results of the analysis are interpreted in several SUSY scenarios, significantly extending previous limits obtained in the same final states. In the framework of minimal gauge-mediated SUSY breaking models, values of the SUSY breaking scale $\Lambda$ below 63 TeV are excluded, independently of tan$\beta$. Exclusion limits are also derived for an mSUGRA/CMSSM model, in both the R-parity-conserving and R-parity-violating case. A further interpretation is presented in a framework of natural gauge mediation, in which the gluino is assumed to be the only light coloured sparticle and gluino masses below 1090 GeV are excluded.

113 data tables

Distribution of MTtau after all analysis requirements but the requirement on MTtau and the final requirement on HT for the 1tau ''Loose'' SR. The SM prediction includes the data-driven corrections discussed in the paper. MC events are normalized to data in the CRs corresponding to MTtau below 130 GeV. Also shown is the expected signal from typical mSUGRA, GMSB and bRPV samples. The last bin in the expected background distribution is an overflow bin.

Distribution of HT after the MTtau requirement for the 1-tau ''Loose'' SR. The SM prediction includes the data-driven corrections discussed in the paper. MC events are normalized to data in the CRs corresponding to MTtau below 130 GeV. Also shown is the expected signal from typical mSUGRA, GMSB and bRPV samples. The last bin in the expected background distribution is an overflow bin.

Distribution of MTtau after all analysis requirements but the requirement on MTtau and the final requirement on HT for the 1tau 'Tight'' SR. The SM prediction includes the data-driven corrections discussed in the paper. MC events are normalized to data in the CRs corresponding to MTtau below 130 GeV. Also shown is the expected signal from typical mSUGRA, GMSB and bRPV samples. The last bin in the expected background distribution is an overflow bin.

More…

Differential cross section measurements for the production of a W boson in association with jets in proton-proton collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 741 (2015) 12-37, 2015.
Inspire Record 1303894 DOI 10.17182/hepdata.67318

Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pt) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 inverse femtobarns. The measured cross sections are compared to predictions from Monte Carlo generators, MADGRAPH + PYTHIA and SHERPA, and to next-to-leading-order calculations from BLACKHAT + SHERPA. The differential cross sections are found to be in agreement with the predictions, apart from the pt distributions of the leading jets at high pt values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.

18 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 6.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 6.

The differential cross section measurement as a function of the transverse momentum of the first leading jet.

More…

Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with $b$-tagged jets in $pp$ collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3109, 2014.
Inspire Record 1301856 DOI 10.17182/hepdata.65210

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in $pp$ collisions at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV with the ATLAS experiment at the LHC, using $t\bar{t}$ events with an opposite-charge $e\mu$ pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb$^{-1}$ and the 2012 8 TeV dataset of 20.3 fb$^{-1}$. The cross-section was measured to be: $\sigma_{t\bar{t}}=182.9\pm 3.1\pm 4.2\pm 3.6 \pm 3.3$ pb ($\sqrt{s}=7$ TeV) and $\sigma_{t\bar{t}}=242.9\pm 1.7\pm 5.5\pm 5.1\pm 4.2$ pb ($\sqrt{s}=8$ TeV, updated as described in the Addendum), where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically-predicted cross-section on $m_t^{\rm pole}$, giving a result of $m_t^{\rm pole}=172.9^{+2.5}_{-2.6}$ GeV. By looking for an excess of $t\bar{t}$ production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks $\tilde{t}_1$ with masses close to the top quark mass decaying via $\tilde{t}_1\rightarrow t\tilde{\chi}^0_1$ to predominantly right-handed top quarks and a light neutralino $\tilde{\chi}_0^1$, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95% confidence level.

3 data tables

95% CL exclusion limit on signal strength.

95% CL exclusion limit on signal cross section for the 7 TeV dataset.

95% CL exclusion limit on signal cross section for the 8 TeV dataset.


Measurement of the $Z/\gamma^*$ boson transverse momentum distribution in $pp$ collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 145, 2014.
Inspire Record 1300647 DOI 10.17182/hepdata.64354

This paper describes a measurement of the $Z/\gamma^*$ boson transverse momentum spectrum using ATLAS proton-proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 7 TeV at the LHC. The measurement is performed in the $Z/\gamma^* \rightarrow e^+e^-$ and $Z/\gamma^* \rightarrow \mu^+\mu^-$ channels, using data corresponding to an integrated luminosity of 4.7 fb$^{-1}$. Normalized differential cross sections as a function of the $Z/\gamma^*$ boson transverse momentum are measured for transverse momenta up to 800 GeV. The measurement is performed inclusively for $Z/\gamma^*$ rapidities up to 2.4, as well as in three rapidity bins. The channel results are combined, compared to perturbative and resummed QCD calculations and used to constrain the parton shower parameters of Monte Carlo generators.

3 data tables

The measured normalized cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) at the Born level in bins of PT(Z) for the Z/GAMMA* --> E+ E- and Z/GAMMA* --> MU+ MU- channels, and correction factors to the bare- and dressed-level cross sections. The relative statistical and total uncorrelated systematic uncertainties are given for each channel as well as the correlated systematic uncertainties.

The measured normalized combined (electron and muon channels) cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) inclusive in rapidity. The cross sections at Born and dressed levels are given as well as the relative statistical and total uncorrelated systematic uncertainties as well as the correlated systematic uncertainties.

The measured normalized combined (electron and muon channels) cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) for 0 <= ABS(YRAP(Z)) < 1, 1 <= ABS(YRAP(Z)) < 2 and 2 <= ABS(YRAP(Z)) < 2.4. The cross sections at Born and dressed levels are given as well as the relative statistical and systematic uncertainties for uncorrelated and correlated sources.


Measurement of prompt J/psi pair production in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 09 (2014) 094, 2014.
Inspire Record 1298812 DOI 10.17182/hepdata.64263

Production of prompt J/$\psi$ meson pairs in proton-proton collisions at $\sqrt{s}$ = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 inverse-femtobarns. The two J/$\psi$ mesons are fully reconstructed via their decays into $\mu^+\mu^-$ pairs. This observation provides for the first time access to the high-transverse-momentum region of J/$\psi$ pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/$\psi$ transverse momentum ($p_T^{J/\psi}$) and rapidity (|$y^{J/\psi}$|): |$y^{J/\psi}$| lower than 1.2 for $p_T^{J/\psi}$ greater than 6.5 GeV/c; |$y^{J/\psi}$| in [1.2,1.43] for a $p_T$ threshold that scales linearly with |$y^{J/\psi}$| from 6.5 to 4.5 GeV/c; and |$y^{J/\psi}$| in [1.43,2.2] for $p_T^{J/\psi}$ greater than 4.5 GeV/c. The total cross section, assuming unpolarized prompt J/$\psi$ pair production is 1.49 $\pm$ 0.07 (stat.) $\pm$ 0.13 (syst.) nb. Different assumptions about the J/$\psi$ polarization imply modifications to the cross section ranging from -31% to +27%.

3 data tables

Differential cross section D(SIG)/DM(J/PSI J/PSI) in bins of the J/PSI pair invariant mass, M(J/PSI J/PSI).

Differential cross section D(SIG)/DABS(DELTA(YRAP)) in bins of the absolute rapidity difference between J/PSI mesons, ABS(DELTA(YRAP)).

Differential cross section D(SIG)/DPT(J/PSI J/PSI) in bins of the transverse momentum of the J/PSI pair, PT(J/PSI J/PSI).


Measurement of jet multiplicity distributions in t t-bar production in pp collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 74 (2015) 3014, 2015.
Inspire Record 1290126 DOI 10.17182/hepdata.64426

The normalised differential top quark-antiquark production cross section is measured as a function of the jet multiplicity in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC with the CMS detector. The measurement is performed in both the dilepton and lepton + jets decay channels using data corresponding to an integrated luminosity of 5.0 inverse femtobarns. Using a procedure to associate jets to decay products of the top quarks, the differential cross section of the t t-bar production is determined as a function of the additional jet multiplicity in the lepton + jets channel. Furthermore, the fraction of events with no additional jets is measured in the dilepton channel, as a function of the threshold on the jet transverse momentum. The measurements are compared with predictions from perturbative quantum chromodynamics and no significant deviations are observed.

6 data tables

Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 30 GeV in the dilepton channel. The statistical and main experimental and model systematic uncertainties are displayed.

Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 60 GeV in the dilepton channel. The statistical and main experimental and model systematic uncertainties are displayed.

Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 35 GeV in the lepton+jets channel. The statistical and main experimental and model systematic uncertainties are displayed.

More…

Measurement of the ratio B(t to Wb)/B(t to Wq) in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 736 (2014) 33-57, 2014.
Inspire Record 1289223 DOI 10.17182/hepdata.64489

The ratio of the top-quark branching fractions $R = B(t \to Wb)/B(t \to Wq)$, where the denominator includes the sum over all down-type quarks (q = b, s, d), is measured in the $t\bar{t}$ dilepton final state with proton-proton collision data at $\sqrt{s}$ = 8 TeV from an integrated luminosity of 19.7 inverse-femtobarns, collected with the CMS detector. In order to quantify the purity of the signal sample, the cross section is measured by fitting the observed jet multiplicity, thereby constraining the signal and background contributions. By counting the number of b jets per event, an unconstrained value of R = 1.014 $\pm$ 0.003 (stat) $\pm$ 0.032 (syst) is measured, in good agreement with the standard model prediction. A lower limit R greater than 0.955 at the 95% confidence level is obtained after requiring R lower than one, and a lower limit on the Cabibbo-Kobayashi-Maskawa matrix element |$V_tb$| greater than 0.975 is set at 95% confidence level. The result is combined with a previous CMS measurement of the t-channel single-top-quark cross section to determine the top-quark total decay width, $\Gamma_t$ = 1.36 $\pm$ 0.02 (stat)$^{+0.14}_{-0.11}$ (syst) GeV.

3 data tables

The measured TOP TOPBAR production cross section.

The measured ratio of branching fractions, R = BR(TOP --> W BOTTOM) / BR(TOP --> W QUARK) where the denominator includes the sum over all down-type quarks (QUARK = BOTTOM, STRANGE, DOWN). The combined measurement and the individual measurements from the three channels considered are presented.

An indirect measurement of the top-quark total decay width.


Measurement of the low-mass Drell-Yan differential cross section at sqrt(s)=7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 06 (2014) 112, 2014.
Inspire Record 1288706 DOI 10.17182/hepdata.64183

The differential cross section for the process $Z/\gamma^*\rightarrow ll$ ($l=e,\mu$) as a function of dilepton invariant mass is measured in pp collisions at $\sqrt{s}=$ 7 TeV at the LHC using the ATLAS detector. The measurement is performed in the $e$ and $\mu$ channels for invariant masses between 26 GeV and 66 GeV using an integrated luminosity of 1.6 fb$^{-1}$ collected in 2011 and these measurements are combined. The analysis is extended to invariant masses as low as 12 GeV in the muon channel using 35 pb$^{-1}$ of data collected in 2010. The cross sections are determined within fiducial acceptance regions and corrections to extrapolate the measurements to the full kinematic range are provided. Next-to-next-to-leading-order QCD predictions provide a significantly better description of the results than next-to-leading-order QCD calculations, unless the latter are matched to a parton shower calculation.

13 data tables

The nominal electron-channel differential Born-level fiducial cross section. The statistical and systematic uncertainties are given for each invariant mass bin. The luminosity uncertainty 1.8% is not included.

The systematic uncertainties of the nominal electron-channel cross-section measurement. Some sources of uncertainty have both correlated and uncorrelated components. Correlated uncertainties arise from the uncertainty in the electroweak background contributions delta(e.w.)_cor, from corrections to the Monte Carlo modelling of the Z/gamma* pT spectra, delta(pTrw)_cor, the electron identification efficiency, delta(id)_cor1 and delta(id)_cor2, the reconstruction efficiency, delta(rec)_cor, and from the Geant4 simulation, delta(geant4)_cor. Uncorrelated uncertainties arise from the isolation and trigger efficiency corrections, delta(trig) and delta(iso) respectively, unfolding uncertainties, delta(res)_unf, and the statistical precision of the signal Monte Carlo, delta(MC). The electron identification efficiency uncertainties have several components other than the two largest correlated parts above. These additional components are all combined into a single uncorrelated error source delta(id)_unc. The uncertainty on the normalisation of the multijet background is given by delta(multijet). The luminosity uncertainty 1.8% is not included.

The nominal muon-channel differential Born-level fiducial cross section. The statistical, systematic, and total uncertainties are given for each invariant mass bin. The luminosity uncertainty 1.8% is not included.

More…

Measurement of the 4l Cross Section at the Z Resonance and Determination of the Branching Fraction of Z->4l in pp Collisions at sqrt(s) = 7 and 8 TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 112 (2014) 231806, 2014.
Inspire Record 1286892 DOI 10.17182/hepdata.64611

Measurements of four-lepton (4$\ell$, $\ell=e,\mu$) production cross sections at the $Z$ resonance in $pp$ collisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass region $m_{\ell^+\ell^-} > 5$ GeV and $80 < m_{4\ell} < 100$ GeV, the measured cross sections are $76 \pm 18 \text { (stat) } \pm 4 \text { (syst) } \pm 1.4 \text { (lumi) }$ fb and $107 \pm 9 \text{ (stat) } \pm 4 \text{ (syst) } \pm 3.0 \text { (lumi) }$ fb at $\sqrt s$ = 7 and 8 TeV, respectively. By subtracting the non-resonant 4$\ell$ production contributions and normalizing with $Z\rightarrow \mu^+\mu^-$ events, the branching fraction for the $Z$ boson decay to $4\ell$ is determined to be $\left( 3.20 \pm 0.25\text{ (stat)} \pm 0.13\text{ (syst)} \right) \times 10^{-6}$, consistent with the Standard Model prediction.

7 data tables

The measured individual cross sections in the fiducial region and the combined cross sections for 4-muon and 4-electron final states at a centre-of-collision energy of 7 TeV.

The measured individual cross sections in the fiducial region and the combined cross sections for 2-muon-2-electron final states at a centre-of-collision energy of 7 TeV.

The measured cross section for four-lepton final states at a centre-of-collision energy of 7 TeV.

More…

Measurement of the production of a W boson in association with a charm quark in pp collisions at sqrt(s)=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 05 (2014) 068, 2014.
Inspire Record 1282447 DOI 10.17182/hepdata.63197

The production of a W boson in association with a single charm quark is studied using 4.6 fb^-1 of pp collision data at sqrt(s)=7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96 +0.26 -0.30 at Q^2=1.9 GeV^2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio sigma(W^+ + bar{c})/sigma(W^- + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s-bar{s} quark asymmetry.

17 data tables

Measured integrated cross sections of the production of a W boson with a single c-jet, a D meson or a D* meson times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.

Measured integrated cross section ratios of the production of W+ and W- bosons associated with a single c-jet, a D meson or a D* meson in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.

Measured differential cross sections as function of the lepton pseudo-rapidity of the production of a W boson with a single c-jet times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. The cross sections are defined for OS-SS events.

More…

Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 06 (2014) 120, 2014.
Inspire Record 1280529 DOI 10.17182/hepdata.64748

The production of a Z boson, decaying into two leptons and produced in association with one or more b jets, is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV. The data were recorded in 2011 with the CMS detector and correspond to an integrated luminosity of 5 inverse femtobarns. The Z(ll) + b-jets cross sections (where ll = mu mu or ee) are measured separately for a Z boson produced with exactly one b jet and with at least two b jets. In addition, a cross section ratio is extracted for a Z boson produced with at least one b jet, relative to a Z boson produced with at least one jet. The measured cross sections are compared to various theoretical predictions, and the data favour the predictions in the five-flavour scheme, where b quarks are assumed massless. The kinematic properties of the reconstructed particles are compared with the predictions from the MADGRAPH event generator using the PYTHIA parton shower simulation.

4 data tables

The cross section at the particle level for the production of a Z boson with exactly one b-jet.

The cross section at the particle level for the production of a Z boson with at least two b-jets.

The cross section at the particle level for the production of a Z boson with at least one b-jet.

More…

Measurement of the production cross section of prompt J/psi mesons in association with a W boson in pp collisions at sqrt{s}=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 04 (2014) 172, 2014.
Inspire Record 1276825 DOI 10.17182/hepdata.62522

The process pp--> W + J/psi provides a powerful probe of the production mechanism of charmonium in hadronic collisions, and is also sensitive to multiple parton interactions in the colliding protons. Using the 2011 ATLAS dataset of 4.5 fb-1 of sqrt{s} = 7 TeV pp collisions at the LHC, the first observation is made of the production of W + prompt J/psi events in hadronic collisions, using W-->mu+nu and J/psi-->mu+mu. A yield of 27.4+7.5-6.5 W + prompt J/psi events is observed, with a statistical significance of 5.1 sigma. The production rate as a ratio to the inclusive W boson production rate is measured, and the double parton scattering contribution to the cross section is estimated.

6 data tables

The W + prompt J/psi to inclusive W production cross-section ratio (times 10^6) in the J/psi fiducial region (Fiducial), after correction for J/psi acceptance (Inclusive), and after subtraction of the double parton scattering component (DPS-subtracted). The first uncertainty is statistical, the second is systematic, and the third/fourth (where applicable) is the uncertainty up/down due to spin-alignment.

The inclusive (SPS+DPS) cross-section ratio (times 10^6) as a function of J/psi transverse momentum, along with the estimate of the DPS contribution. For the inclusive result, the first uncertainty is statistical, second uncertainty is systematic, and the third uncertainty is the possible variation due to spin-alignment.

The inclusive (SPS+DPS) cross-section ratio (times 10^6) as a function of J/psi transverse momentum under the LONGITUDINAL spin-alignment hypothesis. The first uncertainty is statistical and the second uncertainty is systematic.

More…

Measurement of the production cross section for a W boson and two b jets in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 735 (2014) 204-225, 2014.
Inspire Record 1273578 DOI 10.17182/hepdata.65711

The production cross section for a W boson and two b jets is measured using proton-proton collisions at sqrt(s) = 7 TeV in a data sample collected with the CMS experiment at the LHC corresponding to an integrated luminosity of 5.0 inverse femtobarns. The W + b b-bar events are selected in the W to mu nu decay mode by requiring a muon with transverse momentum pt > 25 GeV and pseudorapidity abs(eta) < 2.1, and exactly two b-tagged jets with pt > 25 GeV and abs(eta) < 2.4. The measured W + b b-bar production cross section in the fiducial region, calculated at the level of final-state particles, is sigma(pp to W + b b-bar) x B(W to mu nu) = 0.53 +/- 0.05 (stat.) +/- 0.09 (syst.) +/- 0.06 (theo.) +/- 0.01 (lum.) pb, in agreement with the standard model prediction. In addition, kinematic distributions of the W + b b-bar system are in agreement with the predictions of a simulation using MADGRAPH and PYTHIA.

2 data tables

The measured $W+b\bar{b}$ cross section.

Parameters for theoretical comparison: theoretical $W+b\bar{b}$ cross section from MCFM and the two corrections (additive double parton scattering cross section estimation at the parton jet level, and multiplicative hadronization correction factor $C_{b\rightarrow B}$ ) that need to be applied in this order to it to compare to the observed cross section.


Measurement of the Muon Charge Asymmetry in Inclusive $pp \to W+X$ Production at $\sqrt s =$ 7 TeV and an Improved Determination of Light Parton Distribution Functions

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 90 (2014) 032004, 2014.
Inspire Record 1273570 DOI 10.17182/hepdata.65456

Measurements of the muon charge asymmetry in inclusive pp to WX production at sqrt(s) = 7 TeV are presented. The data sample corresponds to an integrated luminosity of 4.7 inverse femtobarns recorded with the CMS detector at the LHC. With a sample of more than twenty million W to mu nu events, the statistical precision is greatly improved in comparison to previous measurements. These new results provide additional constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10E-3 to 10E-1. These measurements and the recent CMS measurement of associated W + charm production are used together with the cross sections for inclusive deep inelastic ep scattering at HERA in a next-to-leading-order QCD analysis. The determination of the valence quark distributions is improved, and the strange-quark distribution is probed directly through the leading-order process g + s to W + c in proton-proton collisions at the LHC.

4 data tables

Summary of the final results for muon charge asymmetry $\mathcal{A}$ with the muon $p_{T}>25$ GeV. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using the FEWZ 3.1 MC tool interfaced with the NLO CT10, NNPDF2.3, HERAPDF1.5, and MSTW2008CPdeut PDF sets. The PDF uncertainty is at 68% C.L. The values are expressed as percentages.

Summary of the final results for muon charge asymmetry $\mathcal{A}$ with the muon $p_{T}>35$ GeV. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using the FEWZ 3.1 MC tool interfaced with the NLO CT10, NNPDF2.3, HERAPDF1.5, and MSTW2008CPdeut PDF sets. The PDF uncertainty is at 68% C.L. The values are expressed as percentages.

Covariance matrix (statistical and systematic uncertainties combined) with the muon $p_{T}>25$ GeV. The units are in $10^{-4}$.

More…

Search for Quantum Black-Hole Production in High-Invariant-Mass Lepton+Jet Final States Using Proton-Proton Collisions at sqrt(s) = 8 TeV and the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.Lett. 112 (2014) 091804, 2014.
Inspire Record 1263762 DOI 10.17182/hepdata.62447

This Letter presents a search for quantum black-hole production using 20.3 inverse fb of data collected with the ATLAS detector in pp collisions at the LHC at sqrt(s) = 8 TeV. The quantum black holes are assumed to decay into a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton+jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.

3 data tables

The combined 95% CL upper limits on the cross section times branching fraction (SIG*BR) for Quantum Black Holes decaying to a lepton and jet, as a function of the threshold mass, Mth.

Numbers of observed events and expected background events for electron+jet channel, along with acceptance (A), experimental efficiency (EPSILON), cumulative efficiency (A*EPSILON), total cross section (SIG*BR) and 95% CL observed upper limit, for various values of the threshold mass, Mth. The leading order cross sections have a statistical precision of the order of 1%. The uncertainties on the predicted background include both statistical and systematic components. Acceptance is calculated using generator-level quantities by imposing selection criteria that apply directly to phase space (electron/jet eta, electron/jet pT, Delta(eta), Delta(phi), <eta>, and Minv). All other selections, which in general correspond to event and object quality criteria, are used to calculate the efficiency on the events included in the acceptance. The cumulative signal efficiency is the product of the acceptance and experimental efficiency.

Numbers of observed events and expected background events for muon+jet channel, along with acceptance (A), experimental efficiency (EPSILON), cumulative efficiency (A*EPSILON), total cross section (SIG*BR) and 95% CL observed upper limit, for various values of the threshold mass, Mth. The leading order cross sections have a statistical precision of the order of 1%. The uncertainties on the predicted background include both statistical and systematic components. Acceptance is calculated using generator-level quantities by imposing selection criteria that apply directly to phase space (muon/jet eta, muon/jet pT, Delta(eta), Delta(phi), <eta>, and Minv). All other selections, which in general correspond to event and object quality criteria, are used to calculate the efficiency on the events included in the acceptance. The cumulative signal efficiency is the product of the acceptance and experimental efficiency.


Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 12 (2013) 030, 2013.
Inspire Record 1262319 DOI 10.17182/hepdata.62207

Measurements of the differential and double-differential Drell-Yan cross sections are presented using an integrated luminosity of 4.5(4.8) inverse femtobarns in the dimuon (dielectron) channel of proton-proton collision data recorded with the CMS detector at the LHC at $\sqrt{s}$ = 7 TeV. The measured inclusive cross section in the Z-peak region (60-120 GeV) is $\sigma(\ell \ell)$ = 986.4 +/- 0.6 (stat.) +/- 5.9 (exp. syst.) +/- 21.7 (th. syst.) +/- 21.7 (lum.) pb for the combination of the dimuon and dielectron channels. Differential cross sections $d\sigma/dm$ for the dimuon, dielectron, and combined channels are measured in the mass range 15 to 1500 GeV and corrected to the full phase space. Results are also presented for the measurement of the double-differential cross section $d^2\sigma/dm d |y|$ in the dimuon channel over the mass range 20 to 1500 GeV and absolute dimuon rapidity from 0 to 2.4. These measurements are compared to the predictions of perturbative QCD calculations at next-to-leading and next-to-next-to-leading orders using various sets of parton distribution functions.

10 data tables

Normalization factors for the cross section measurements from the Z-peak region (60 < M < 120 GeV) with associated uncertainties. The measurements are given in the muon, electron and combined channels. The three systematic uncertainties correspond to experimental, theoretical and luminosity.

The DY cross section measurements for the muon channel normalized to the Z-peak region, pre- and post-FSR, as measured in the full acceptance and for the CMS detector acceptance. The uncertainty indicates the experimental (statistical and systematic) uncertainties summed in quadrature with the theoretical uncertainty resulting from the model-dependent kinematic distributions inside each bin.

The DY cross section measurements for the electron channel normalized to the Z-peak region, pre- and post-FSR, as measured in the full acceptance and for the CMS detector acceptance. The uncertainty indicates the experimental (statistical and systematic) uncertainties summed in quadrature with the theoretical uncertainty resulting from the model-dependent kinematic distributions inside each bin.

More…

Measurement of the Prompt $J/\psi$ and $\psi$(2S) Polarizations in $pp$ Collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 727 (2013) 381-402, 2013.
Inspire Record 1244128 DOI 10.17182/hepdata.63898

The polarizations of prompt J/psi and psi(2S) mesons are measured in proton-proton collisions at sqrt(s) = 7 TeV, using a dimuon data sample collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.9 inverse femtobarns. The prompt J/psi and psi(2S) polarization parameters lambda[theta], lambda[phi], and lambda[theta,phi], as well as the frame-invariant quantity lambda(tilde), are measured from the dimuon decay angular distributions in three different polarization frames. The J/psi results are obtained in the transverse momentum range 14 < pt < 70 GeV, in the rapidity intervals abs(y) < 0.6 and 0.6 < abs(y) < 1.2. The corresponding psi(2S) results cover 14 < pt < 50 GeV and include a third rapidity bin, 1.2 < abs(y) < 1.5. No evidence of large transverse or longitudinal polarizations is seen in these kinematic regions, which extend much beyond those previously explored.

60 data tables

Lambda-Theta in the CS frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.

Lambda-Theta in the CS frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.

Lambda-Phi in the CS frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.

More…

Measurement of the differential cross-section of $B^{+}$ meson production in pp collisions at $\sqrt{s}$ = 7 TeV at ATLAS

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 10 (2013) 042, 2013.
Inspire Record 1240670 DOI 10.17182/hepdata.61591

The production cross-section of B+ mesons is measured as a function of transverse momentum pT and rapidity y in proton--proton collisions at center-of-mass energy sqrt(s) = 7 TeV, using 2.4 fb-1 of data recorded with the ATLAS detector at the Large Hadron Collider. The differential production cross-sections, determined in the range 9<pT<120 GeV and y<2.25, are compared to next-to-leading-order theoretical predictions.

6 data tables

Differential cross-section measurement for B+ production multiplied by the branching ratio to the J/PSI < MU+ MU- > K+ final state in B+ pT intervals in the B+ rapidity range |y|<0.5. The first quoted uncertainty is statistical, the second uncertainty is systematic.

Differential cross-section measurement for B+ production multiplied by the branching ratio to the J/PSI < MU+ MU- > K+ final state in B+ pT intervals in the B+ rapidity range 0.5<|y|<1. The first quoted uncertainty is statistical, the second uncertainty is systematic.

Differential cross-section measurement for B+ production multiplied by the branching ratio to the J/PSI < MU+ MU- > K+ final state in B+ pT intervals in the B+ rapidity range 1<|y|<1.5 The first quoted uncertainty is statistical, the second uncertainty is systematic.

More…

Measurement of the $\Upsilon(1S), \Upsilon(2S)$, and $\Upsilon(3S)$ Cross Sections in $pp$ Collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 727 (2013) 101-125, 2013.
Inspire Record 1225274 DOI 10.17182/hepdata.60518

The $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) production cross sections are measured using a data sample corresponding to an integrated luminosity of 35.8 $\pm$ 1.4 inverse picobarns of proton-proton collisions at $\sqrt{s}$ = 7 TeV, collected with the CMS detector at the LHC. The Upsilon resonances are identified through their decays to dimuons. Integrated over the $\Upsilon$ transverse momentum range $p_{t}^{\Upsilon} \lt$ 50GeV and rapidity range |$y^\Upsilon$| $\lt$ 2.4, and assuming unpolarized Upsilon production, the products of the Upsilon production cross sections and dimuon branching fractions are \begin{equation*}\sigma(pp \to \Upsilon(1S) X) . B(\Upsilon(1S) \to \mu^+ \mu^-) = (8.55 \pm 0.05^{+0.56}_{-0.50} \pm 0.34) nb,\end{equation*} \begin{equation*}\sigma(pp \to \Upsilon(2S) X) . B(\Upsilon(2S) \to \mu^+ \mu^-) = (2.21 \pm 0.03^{+0.16}_{-0.14} \pm 0.09) nb,\end{equation*} \begin{equation*}\sigma(pp \to \Upsilon(3S) X) . B(\Upsilon(3S) \to \mu^+ \mu^-) = (1.11 \pm 0.02^{+0.10}_{-0.08} \pm 0.04) nb, \end{equation*} where the first uncertainty is statistical, the second is systematic, and the third is from the uncertainty in the integrated luminosity. The differential cross sections in bins of transverse momentum and rapidity, and the cross section ratios are presented. Cross section measurements performed within a restricted muon kinematic range and not corrected for acceptance are also provided. These latter measurements are independent of Upsilon polarization assumptions. The results are compared to theoretical predictions and previous measurements.

31 data tables

The fiducial and acceptance-corrected cross sections for PT<50 GeV/c and |rapidity|<2.4.

The fiducial and acceptance corrected UPSI(1S) production cross sections (times di-muon branching ratio) as a function of PT for the |rapidity| range < 2.4. Note these are integrated cross sections and the acceptance-corrected cross sections assume the UPSI(1S) are unpolarized with the variations due to the 4 extreme polarization scenarios shown in the last 4 columns. The fiducial cross sections do not need to make any assumptions on the polarizations scenarios. The luminosity uncertainty of 4% is not included in the systematic errors.

The fiducial and acceptance corrected UPSI(2S) production cross sections (times di-muon branching ratio) as a function of PT for the |rapidity| range < 2.4. Note these are integrated cross sections and the acceptance-corrected cross sections assume the UPSI(2S) are unpolarized with the variations due to the 4 extreme polarization scenarios shown in the last 4 columns. The fiducial cross sections do not need to make any assumptions on the polarizations scenarios. The luminosity uncertainty of 4% is not included in the systematic errors.

More…

Measurement of angular correlations in Drell-Yan lepton pairs to probe Z/gamma* boson transverse momentum at sqrt(s)=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Lett.B 720 (2013) 32-51, 2013.
Inspire Record 1204784 DOI 10.17182/hepdata.61421

A measurement of angular correlations in Drell-Yan lepton pairs via the phistar observable is presented. This variable probes the same physics as the Z/gamma* boson transverse momentum with a better experimental resolution. The Z/gamma*->e+e- and Z/gamma*->mu+mu- decays produced in proton--proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV are used. The data were collected with the ATLAS detector at the LHC and correspond to an integrated luminosity of 4.6 fb-1. Normalised differential cross sections as a function of phistar are measured separately for electron and muon decay channels. These channels are then combined for improved accuracy. The cross section is also measured double differentially as a function of phistar for three independent bins of the Z boson rapidity. The results are compared to QCD calculations and to predictions from different Monte Carlo event generators. The data are reasonably well described, in all measured Z boson rapidity regions, by resummed QCD predictions combined with fixed-order perturbative QCD calculations. Some of the Monte Carlo event generators are also able to describe the data. The measurement precision is typically better by one order of magnitude than present theoretical uncertainties.

7 data tables

The measured PHI* distributions for the dielectron events corrected back to the born level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.

The measured PHI* distributions for the dielectron events corrected back to the dress level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.

The measured PHI* distributions for the dielectron events corrected back to the bare particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.

More…