We have measured the total and differential cross sections of the reaction e + e − → γγ ( γ ) at center-of-mass energies around 91 GeV, with an integrated luminosity of 14.2 pb −1 . The results are in good agreement with QED predictions. We set lower limits, at 95% confidence level, on the QED cutoff parameters of Λ + > 139 GeV, Λ − > 108 GeV and on the mass of an excited electron of m e∗ > 127 GeV . We searched for Z 0 rare decays with photonic signitures in the final state. Upper limits, at 95% confidence level, for branching ratio of Z 0 decaying into π 0 γ / γγ , νγ and γγγ are 1.2 × 10 −4 , 1.8 × 10 −4 , 3.3 × 10 −5 respectively.
Measured cross section for the 1991 data.
Measured cross section for the 1990 data.
Measured differential cross sections of combined 1990 and 1991 data.
We have measured the cross section for γγ production with the TOPAZ detector in the energy region √ s =50.0–61.4 GeV. The observed cross section for γγ production integrated over |cos θ | ⩽ 0.77 is 50.2±0.8±2.2 pb at 〈√ s 〉=57.6 GeV and the ratio of this value to the QED prediction is 1.01±0.02±0.04. The angular distribution is in good agreement with the QED predictions, thereby setting limits on the compositeness scales, Λ L+R + =168 GeV, Λ L+R − =97 GeV, Λ L,R =141 GeV, Λ L,R − =81 GeV, and Λ L−R ± =68 GeV, at the 95% confidence level. The reaction e + e − → γγγ was also studied and was found consistent with the QED prediction.
No description provided.
No description provided.
No description provided.
The cross section of the pure QED process e + e − → γγ has been measured using data accumulated during the 1989 and 1990 scans of the Z 0 resonance at LEP. Both the energy dependence and the angular distribution are in good agreement with the QED prediction. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ have been set at 1.4×10 −4 , 1.4×10 −4 and 2.0×10 −4 respectively. Lower limits on the cutoff parameters of the modified electron propagator have been found to be Λ + > 117 GeV and Λ − > 110 GeV. The reaction e + e − → γγγ has also been studied and was found to be consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ has been set at 6.6 × 10 −5 . All the limits are given at 95% confidence level.
No description provided.
No description provided.
No description provided.
Differential cross sections fore+e−→γγ have been measured at center-of-mass energies of 55, 56, 56.5 and 57 GeV. The results are in good agreement with those predicted by QED. Possible deviations from QED are studied in terms of contact interactions, and the limits on compositeness scales are obtained. Using events with a gramma pair in the final state, a search is made for the pair production of unstable photons,\(e^ +e^ -\to \tilde \gamma\tilde \gamma \). No candidate events were found and a new limit on the photino mass is obtained.
No description provided.
No description provided.
No description provided.
The reactions e + e − →γγγ and e + e − →γγγγ have been studied at center-of-mass energies between 35 and 46.8 GeV with an integrated luninosity of about 130 pb −1 accumulated with the CELLO detector at PETRA. The measurements are compared to QED calculations up to third and fourth orders of perturbation theory. Excellent agreement is observed.
No description provided.
High-precision measurements of electron-positron annihilation into final states of two, three, and four photons are presented. The data were obtained with the MAC detector at the PEP storage ring of the Stanford Linear Accelerator Center, at a center-of-mass energy of 29 GeV. The measured e+e−→γγ differential cross section is used to test the validity of quantum electrodynamics (QED) in this energy range; it agrees well with QED, and the limit on cutoff parameters for the electron propagator is Λ>66 GeV. The measurement of e+e−→γγγ is used to test the QED calculations of order α3 and to search for anomalies that would indicate the existence of new particles; the agreement with QED is excellent and no anomalies are found. Two events from the reaction e+e−→γγγγ are found, in agreement with the QED prediction.
Errors are combined statistical and systematics.
No description provided.
Two 4gamma events are observed corresponding to a cross section of 0.02 PB.