The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.
Measured cross section for the electron and muon channels combined.
Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 < Q^2 <0.85GeV^2 and 1.1GeV < W_gg < 3GeV. These results, together with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 < Q^2 < 30 GeV^2.
Production cross section as a function of Q**2. Differential cross sectionsare corrected to the centre of each bin.
Production cross section for two-photon data as a function of Q**2.
Production cross section as a function of W.
A high precision study of the process gamma gamma -> p p-bar has been performed using a data sample of 89/fb collected with the Belle detector at the KEKB e+e- collider. The cross section of p p-bar production has been measured at two-photon center-of-mass (c.m.) energies between 2.025 and 4.0 GeV and in the c.m. angular range of |cos(theta^*)|<0.6. Production of gamma gamma -> eta_c -> p p-bar is observed and the product of the two-photon width of the eta_c and its branching ratio to p p-bar is determined.
Measured cross section for GAMMA GAMMA --> PBAR P in the angular region ABS(COS(THETA)) < 0.6.
Measured differential cross sections versus COS(THETA) for the W ranges 2.075 to 2.5, 2.5 to 3.0 and 3.0 to 4.0 GeV.
Measured differential cross sections versus COS(THETA) for the W ranges 2.075 to 2.1, 2.1 to 2.2 and 2.2 to 2.3 GeV.
Particle production of identified charged hadrons, $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ in Au+Au collisions at $\sqrt(snn) =$ 200 GeV has been studied as a function of transverse momentum and collision centrality at $y=0$ and $y\sim1$ by the BRAHMS experiment at RHIC. Significant collective transverse flow at kinetic freeze-out has been observed in the collisions. The magnitude of the flow rises with the collision centrality. Proton and kaon yields relative to the pion production increase strongly as the transverse momentum increases and also increase with centrality. Particle yields per participant nucleon show a weak dependence on the centrality for all particle species. Hadron production remains relatively constant within one unit around midrapidity in Au+Au collisions at $\sqrt(snn) =$ 200 GeV.
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$,$\mathrm{\pi}^{-}$,$\mathrm{K}^{+}$,$\mathrm{K}^{-}$,$\mathrm{p}$,$\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\langle p_{\mathrm{T}}\rangle$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$,$\mathrm{\pi}^{-}$,$\mathrm{K}^{+}$,$\mathrm{K}^{-}$,$\mathrm{p}$,$\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\beta_{\mathrm{S}}$,$T$,$\chi^2$,$\nu$ versus $\mathrm{Centrality}$ for $\mathrm{h}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
The first measurement of direct photons in Au+Au collisions at sqrt(s_NN) = 200 GeV is presented. The direct photon signal is extracted as a function of the Au+Au collision centrality and compared to NLO pQCD calculations. The direct photon yield is shown to scale with the number of nucleon-nucleon collisions for all centralities.
Double ratio of measured $(\gamma/\pi^0)_{Measured}$ invariant yield ratio to the background decay $(\gamma/\pi^0)_{Background}$ ratio as a function of $p_T$ for minimum bias and for five centralities of Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.
Double ratio of measured $(\gamma/\pi^0)_{Measured}$ invariant yield ratio to the background decay $(\gamma/\pi^0)_{Background}$ ratio as a function of $p_T$ for minimum bias and for five centralities of Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.
Direct $\gamma$ invariant yields as a function of transverse momentum for 9 centrality selections and minimum bias Au+AU collisions at $\sqrt{s_{NN}}$ = 200 GeV. Data with no errors represents 90% confidence level upper limit. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.
We study the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-\gamma$, with a hard photon radiated from the initial state. About 60,000 fully reconstructed events have been selected from 89 $fb^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that these data can be compared with the corresponding direct $e^+e^-$ measurements. From the $4\pi$-mass spectrum, the cross section for the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-$ is measured for center-of-mass energies from 0.6 to 4.5 $GeV/c^2$. The uncertainty in the cross section measurement is typically 5%. We also measure the cross sections for the final states $K^+ K^- \pi^+\pi^-$ and $K^+ K^- K^+ K^-$. We observe the $J/\psi$ in all three final states and measure the corresponding branching fractions. We search for X(3872) in $J/\psi (\to\mu^+\mu^-) \pi^+\pi^-$ and obtain an upper limit on the product of the $e^+e^-$ width of the X(3872) and the branching fraction for $X(3872) \to J/\psi\pi^+\pi^-$.
Measured PI+ PI- PI+ PI- cross sections. The errors are statistical only.
Measured K+ K- PI+ PI- cross sections. The errors are statistical only.
Measured K+ K- K+ K- cross sections. The errors are statistical only.
Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 < Q2 < 5000 GeV2. The data were taken at the ep collider HERA with centre-of-mass energy sqrt(s) = 318 GeV using the ZEUS detector and correspond to an integrated luminosity of 82.2 pb-1. Jets were identified in the Breit frame using the k_T cluster algorithm in the longitudinally invariant inclusive mode. Measurements of differential dijet and trijet cross sections are presented as functions of jet transverse energy E_{T,B}{jet}, pseudorapidity eta_{LAB}{jet} and Q2 with E_{T,B}{jet} > 5 GeV and -1 < eta_{LAB}{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant alpha_s(M_Z), determined from the ratio of the trijet to dijet cross sections, is alpha_s(M_Z) = 0.1179 pm 0.0013(stat.) {+0.0028}_{-0.0046}(exp.) {+0.0064}_{-0.0046}(th.)
Inclusive trijet cross section as a function of the jet transverse energy in the Breit frame for the jet with the highest transverse energy.
Inclusive trijet cross section as a function of the jet transverse energy in the Breit frame for the jet with the second highest transverse energy.
Inclusive trijet cross section as a function of the jet transverse energy in the Breit frame for the jet with the third highest transverse energy.
First measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarized 6-LiD target are presented. The data were taken in 2002 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. The Collins asymmetry turns out to be compatible with zero, as does the measured Sivers asymmetry within the present statistical errors.
Asymmetries as a function of X for LEADING hadrons.
Asymmetries as a function of Z for LEADING hadrons.
Asymmetries as a function of PT for LEADING hadrons.
We present measurements of the inclusive production cross sections of the Upsilon(1S) bottomonium state in ppbar collisions at sqrt(s) = 1.96 TeV. Using the Upsilon(1S) to mu+mu- decay mode for a data sample of 159 +- 10 pb^-1 collected by the D0 detector at the Fermilab Tevatron collider, we determine the differential cross sections as a function of the Upsilon(1S) transverse momentum for three ranges of the Upsilon(1S) rapidity: 0 < |y| < 0.6, 0.6 < |y| < 1.2, and 1.2 < |y| < 1.8.
Cross section per unit of rapidity times branching ratio to MU+ MU-. Systematic (DSYS) error does not include the 6.1 PCT uncertainty on the luminosity.
Normalized differential cross section for UPSI(1S) production.. Errors contain statistical and systematics (excluding luminosity error).
The e+e- -> e+e- hadrons reaction, where one of the two electrons is detected in a low polar-angle calorimeter, is analysed in order to measure the hadronic photon structure function F2gamma . The full high-energy and high-luminosity data set, collected with the L3 detector at centre-of-mass energies 189-209GeV, corresponding to an integrated luminosity of 608/pb is used. The Q^2 range 11-34GeV^2 and the x range 0.006-0.556 are considered. The data are compared with recent parton density functions.
Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 11 TO 14 GeV**2.
Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 14 TO 20 GeV**2.
Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 20 TO 34 GeV**2.