In this letter, measurements of the shared momentum fraction ($z_{\rm{g}}$) and the groomed jet radius ($R_{\rm{g}}$), as defined in the SoftDrop algorihm, are reported in \pp collisions at $\sqrt{s} = 200$ GeV collected by the STAR experiment. These substructure observables are differentially measured for jets of varying resolution parameters from $R = 0.2 - 0.6$ in the transverse momentum range $15 < p_{\rm{T, jet}} < 60$ GeV$/c$. These studies show that, in the $p_{\rm{T, jet}}$ range accessible at $\sqrt{s} = 200$ GeV and with increasing jet resolution parameter and jet transverse momentum, the $z_{\rm{g}}$ distribution asymptotically converges to the DGLAP splitting kernel for a quark radiating a gluon. The groomed jet radius measurements reflect a momentum-dependent narrowing of the jet structure for jets of a given resolution parameter, i.e., the larger the $p_{\rm{T, jet}}$, the narrower the first splitting. For the first time, these fully corrected measurements are compared to Monte Carlo generators with leading order QCD matrix elements and leading log in the parton shower, and to state-of-the-art theoretical calculations at next-to-leading-log accuracy. We observe that PYTHIA 6 with parameters tuned to reproduce RHIC measurements is able to quantitatively describe data, whereas PYTHIA 8 and HERWIG 7, tuned to reproduce LHC data, are unable to provide a simultaneous description of both $z_{\rm{g}}$ and $R_{\rm{g}}$, resulting in opportunities for fine parameter tuning of these models for \pp collisions at RHIC energies. We also find that the theoretical calculations without non-perturbative corrections are able to qualitatively describe the trend in data for jets of large resolution parameters at high $p_{\rm{T, jet}}$, but fail at small jet resolution parameters and low jet transverse momenta.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.4$.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.2$.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.6$.
The reaction π−p→X−p, X−→ηπ−, η→γγ has been studied in an optical spark-chamber experiment at the Argonne ZGS (Zero Gradient Synchrotron) at a beam momentum of 6.0 GeV/c and with 0.27≤|t|≤0.42 (GeV/c)2. The ηπ mass spectrum contains about 1400 events in the mass range 0.80<M(ηπ)<1.55 GeV/c2, and is dominated by approximately 1000 events of the type A2−→ηπ−. No structure is discernible within the A2 mass spectrum for an experimental resolution of 7.1 MeV/c2 [16.7 MeV/c2 FWHM (full width at half maximum)]. A single D-wave Breit-Wigner distribution fits the data with a high confidence level, yielding for the A2 the parameters M0=1.323±0.003 GeV/c2 and Γ0=0.108±0.009 GeV/c2. The angular distribution of the decay A2−→ηπ− is analyzed and the resultant density matrix elements have the values ρ11=0.45±0.02, ρ1−1=0.45±0.04, and ρ00=0.09±0.04. All other elements are consistent with zero. Finally, the missing-mass spectrum in the region of the A2 is presented. A signal of 230 events above background per 5-MeV/c2 interval is observed at the A2 peak, with a signal to background ratio of greater than 1:1. A single D-wave Breit-Wigner distribution together with a quadratic background fits the data well, with the parameters for the A2 being M0=1.324±0.003 GeV/c2 and Γ0=0.104±0.009 GeV/c2. Both A2 mass spectra are incompatible with the dipole shape.
No description provided.
THIS FIT ASSUMES ALL OTHER DENSITY MATRIX ELEMENTS (RHO(2M) AND RE(RHO(10))) ARE ZERO SINCE THEY ARE QUITE CONSISTENT WITH ZERO IN A FULL FIT. QUOTED ERRORS INCLUDE SYSTEMATIC ERRORS, WHILE STATISTICAL FITTING ERRORS ARE SHOWN SEPARATELY.
None
No description provided.
INTEGRATED CROSS SECTION ESTIMATED USING MODEL.
Measurements of the spin transfer parameters, K NN and K LL , at 500, 650 and 800 MeV are presented for the reaction p d → n pp at 0°. The data are useful input to the NN data base and indicate that the quasi-free charge exchange (CEX) reaction us a useful mechanism for producing neutrons with at least 40% polarization at energies as low as 500 MeV.
QUASI-FREE NP ELASTIC SCATTERING.
The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of $\cal P$ and $\cal CP$ symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr at $\sqrt{s_{\rm NN}}=200$ GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.
fig2_left_low_isobarpaper_star_blue_case2_zrzr_nonzeros.
fig2_left_low_isobarpaper_star_grey_data_zrzr_nonzeros.
fig2_left_low_isobarpaper_star_red_case3_zrzr_nonzeros.
Measurements are presented for several mixtures of the spin observables CSS,CSL=CLS, CLL, and CNN for neutron-proton elastic scattering. These data were obtained with a free polarized neutron beam, a polarized proton target, and a large magnetic spectrometer for the outgoing proton. The neutron beam kinetic energies were 484, 567, 634, 720, and 788 MeV. Combining these results with earlier measurements allows the determination of the pure spin observables CSS, CLS, and CLL at 484, 634, and 788 MeV for c.m. angles 25°≤θc.m.≤180° and at 720 MeV for 35°≤θc.m.≤80°. These data make a significant contribution to the knowledge of the isospin-0 nucleon-nucleon scattering amplitudes. © 1996 The American Physical Society.
Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.
Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.
Results for the pure spin observables. Statistical errors only. The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.
Results are presented for the spin-spin correlation parameters CSS and CLS for free np elastic scattering at neutron beam kinetic energies of 484, 634, 720, and 788 MeV and c.m. angles between 25° and 80°. The measurements were performed with a polarized neutron beam and a polarized proton target. These are the first measurements of this type to be reported in the forward angular region with a free polarized neutron beam. The observables CSS and CLS are both small at all energies, except for CLS at 788 MeV, which is larger than phase-shift analysis predictions by more than one standard deviation for most of the measured points.
No description provided.
No description provided.
No description provided.
Toward the goal of experimentally determining the p-p elastic-scattering amplitudes at 6 GeV/c, we have measured a number of triple- and double-spin correlation parameters over the ‖t‖ range between 0.2 and 1.0 (GeV/c)2. These new data permit the first nucleon-nucleon amplitude determination in the multi-GeV energy range. Polarized beams from the Argonne Zero Gradient Synchrotron and polarized targets were utilized. The polarization of the recoil proton was measured with a carbon polarimeter. A total of 14 different spin observables were measured (five spin transfer, four depolarization, and five triple-spin correlation parameters). These have been combined with earlier results, resulting in a data set of typically 30 measurements of 20 different spin observables for each of six ‖t‖ values between 0.2 and 1.0 (GeV/c)2. A solution for the amplitudes has been found at each ‖t‖, and comparisons are presented with several different models. The spin-nonflip helicity amplitudes are found to be much larger than the spin-flip amplitudes.
No description provided.
No description provided.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$ in the center-of-mass frame. A systematic analysis of the proton cumulants and correlation functions up to sixth-order as well as the corresponding ratios as a function of the collision centrality, $p_{\rm T}$, and $y$ are presented. The effect of pileup and initial volume fluctuations on these observables and the respective corrections are discussed in detail. The results are compared to calculations from the hadronic transport UrQMD model as well as a hydrodynamic model. In the most central 5% collisions, the value of proton cumulant ratio $C_4/C_2$ is negative, drastically different from the values observed in Au+Au collisions at higher energies. Compared to model calculations including Lattice QCD, a hadronic transport model, and a hydrodynamic model, the strong suppression in the ratio of $C_4/C_2$ at 3 GeV Au+Au collisions indicates an energy regime dominated by hadronic interactions.
The uncorrected number of charged particles except protons ($N_{\rm ch}$) within the pseudorapidity $−2<\eta<0$ used for the centrality selection for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV. The centrality classes are expressed in % of the total cross section. The lower boundary of the particle multiplicity ($N_{\rm ch}$) is included for each centrality class. Values are provided for the average number of participants ($\langle N_{\rm part}\rangle$) and pileup fraction. The fraction of pileup for each centrality bin is also shown in the last column. The averaged pileup fraction from the minimum biased collisions is determined to be 0.46%. Values in the parentheses are systematic uncertainty.
The centrality definition determined by $N_{\rm part}$ in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV from the UrQMD model. The centrality definition is only used in the UrQMD calculation.
Main contributors to systematic uncertainty to the proton cumulant ratios: $C_2/C_1$, $C_3/C_2$,and $C_4/C_2$ from 0–5% central 3 GeV Au+Au collisions. The first row shows the values and statistical uncertainties of those ratios. The corresponding values of these ratios along with the statistical uncertainties are listed in the table. The final total value is the quadratic sum of uncertainties from centrality, pileup, and the dominant contribution from TPC hits, DCA, TOF $m^2$, and detector efficiency. Clearly, this analysis is systematically dominant.