As part of a program of measurements of the πp system we have measured the backward differential cross section for π+p elastic scattering at 16 momenta from 1.25 to 2.0 GeV/c inclusive. The angular region covered is -0.46 to -0.97 in cosθc.m.. The high resolution in u of 0.03 to 0.04 (GeV/c)2, together with good statistics, enables a detailed examination of the momentum and angular dependence of structure in this channel. The data are compared with distributions from other experiments and with the most recent phaseshift fit.
No description provided.
No description provided.
No description provided.
We have measured the backward differential cross section in π−p elastic scattering at 31 momenta from 1.28 to 3.0 GeV/c. These measurements covered the center-of-mass angular range of 125°-178° corresponding to −0.570≲cosθc.m.≲−0.999. Considerable structure in the angular distribution is found. We compare these data with data from other experimets and to predictions made by the latest phase-shift solution. We find, in general, good agreement with other data in the few regions of overlap. The fits from the phase-shift solution do not accurately reproduce these data at low momenta below 1.9 GeV/c but give excellent agreement above this momentum.
No description provided.
No description provided.
No description provided.
Measurements of the differential cross sections for π−d elastic scattering in the backward angular region are presented. These measurements were made at thirteen incident-pion momenta ranging from 496 to 1050 MeV/c, over the center-of-mass angular range 148° to 177°. The experiment was performed at the LBL Bevatron. Experimental apparatus consisted of a liquid deuterium target and a double-arm spectrometer which included scintillation-counter hodoscopes. Center-of-mass differential cross sections were found to be generally smooth over the angular range covered and can be fitted with low-order polynomials. The extrapolated differential cross sections at 180° scattering angle were found to decrease rapidly with increasing momentum, with a prominent peak near 700 MeV/c and a shoulder near 900 MeV/c. These data are discussed in terms of existing models employing "d*" structures, and are compared with other similar measurements.
.
.
.
Differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center-of-mass system have been measured at 33 incident pion momenta in the range 600 to 1280 MeV/c. The experiment, which was performed at the Bevatron at the Lawrence Berkeley Laboratory, employed a liquid hydrogen target, a double-arm spectrometer, and standard counter techniques to detect the elastic events. The data from this experiment are compared to all other published data in this momentum region. The over-all agreement is good. The data of this experiment are also compared with the results of the recent phase-shift analysis by Almehed and Lovelace. In the momentum region between 700 and 900 MeV/c, the slope of the backward angular distribution goes rapidly through zero from negative to positive, and the magnitude of the differential cross section falls by more than a factor of 10. Momentum-dependent structure is seen in the extrapolated differential cross sections at 180°. Two prominent dips in the 180° differential cross sections appear at 880 and 1150 MeV/c. This structure is discussed in terms of a direct-channel resonance model that assumes only resonant partial waves are contributing to the cross sections for large scattering angles.
No description provided.
No description provided.
No description provided.
The differential cross-section for π - -p elastic scattering over the angular range 125° to 178° center of mass has been measured between 1.28 and 3.0 GeV/ c . Considerable structure is found and is discussed in terms of direct channel resonances.
No description provided.
No description provided.
No description provided.
The differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center of mass have been measured at 33 incident-pion momenta in the range 600 to 1280 MeV/c. Angular distributions are presented. The extrapolated differential cross sections at 180° show considerable structure, in particular a dip near 1150 MeV/c. In general the near-180° cross sections do not agree with existing phase shift solutions above 1000 MeV/c
INTERPOLATED DATA.
INTERPOLATED DATA.
INTERPOLATED DATA.