Search for first-generation scalar and vector leptoquarks

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abdesselam, A. ; et al.
Phys.Rev.D 64 (2001) 092004, 2001.
Inspire Record 557085 DOI 10.17182/hepdata.42922

We describe a search for the pair production of first-generation scalar and vector leptoquarks in the eejj and enujj channels by the D0 Collaboration. The data are from the 1992--1996 ppbar run at sqrt{s} = 1.8 TeV at the Fermilab Tevatron collider. We find no evidence for leptoquark production; in addition, no kinematically interesting events are observed using relaxed selection criteria. The results from the eejj and enujj channels are combined with those from a previous D0 analysis of the nunujj channel to obtain 95% confidence level (C.L.) upper limits on the leptoquark pair-production cross section as a function of mass and of beta, the branching fraction to a charged lepton. These limits are compared to next-to-leading-order theory to set 95% C.L. lower limits on the mass of a first-generation scalar leptoquark of 225, 204, and 79 GeV/c^2 for beta=1, 1/2, and 0, respectively. For vector leptoquarks with gauge (Yang-Mills) couplings, 95% C.L. lower limits of 345, 337, and 206 GeV/c^2 are set on the mass for beta=1, 1/2, and 0, respectively. Mass limits for vector leptoquarks are also set for anomalous vector couplings.

3 data tables

No description provided.

No description provided.

No description provided.


First Measurement of Form Factors of the Decay Xi0->Sigma+ e- anti-nu/e

The KTeV collaboration Alavi-Harati, A. ; Alexopoulos, T. ; Arenton, M. ; et al.
Phys.Rev.Lett. 87 (2001) 132001, 2001.
Inspire Record 556399 DOI 10.17182/hepdata.43756

We present the first measurement of the form factor ratios g1/f1 (direct axial-vector to vector), g2/f1 (second class current) and f2/f1 (weak magnetism) for the decay Xi0 -> Sigma+ e- anti-nu/e using the KTeV (E799) beam line and detector at Fermilab. From the Sigma+ polarization measured with the decay Sigma+ -> p pi0 and the e- - anti-nu/e correlation, we measure g1/f1 to be 1.32 +0.21-0.17(stat.) +/- 0.05(syst.), assuming the SU(3)f (flavor) values for g2/f1 and f2/f1. Our results are all consistent with exact SU(3)f symmetry.

1 data table

Vector(F1) to axial(G1) formfactor ratio. Total systematic error is 0.054.


Measurement of the neutral current cross section and F2 structure function for deep inelastic e+ p scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 21 (2001) 443-471, 2001.
Inspire Record 557597 DOI 10.17182/hepdata.46774

The cross section and the proton structure function F2 for neutral current deep inelastic e+p scattering have been measured with the ZEUS detector at HERA using an integrated luminosity of 30 pb-1. The data were collected in 1996 and 1997 at a centre-of-mass energy of 300 GeV. They cover the kinematic range 2.7 < Q^2 < 30000 GeV2 and 6.10^-5 < x < 0.65. The variation of F2 with x and Q2 is well described by next-to-leading-order perturbative QCD as implemented in the DGLAP evolution equations.

6 data tables

The electromagnetic structure function, F2(C=EM), in NC DIS scattering at Q**2 from 2.7 to 30000 GeV**2.

The corrections to the structure function, F2(C=EM), in NC DIS scattering at Q**2 from 2.7 to 30000 GeV**2.

The relative uncertainties in the reduced cross section. See text of paper for more details. There is an additional 2 PCT overall normalization error not included, andan addtional uncertainty of 1 PCT at low Q**2.. DUNC - Uncorrelated systematic error. Correlated Systematic Errors:. D1 - positron finding and efficiency. D2 - positron scattering angle - A. D3 - positron scattering angle - B. D4 - positron energy scale. D5 - hadronic energy measurment - FCAL. D6 - hadronic energy measurment - BCAL. D7 - hadronic energy measurment - RCAL. D8 - hadronic energy flow - A. D9 - background subtractions. D10 - hadronic energy flow - B.

More…

Single intermediate vector boson production in e+ e- collisions at s**(1/2) = 183-GeV and 189-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 515 (2001) 238-254, 2001.
Inspire Record 560550 DOI 10.17182/hepdata.49830

The cross-sections for the production of single charged and neutral intermediate vector bosons were measured using integrated luminosities of 52 pb^{-1} and 154 pb^{-1} collected by the DELPHI experiment at centre-of-mass energies of 182.6 GeV and 188.6 GeV, respectively. The cross-sections for the reactions were determined in limited kinematic regions. The results found are in agreement with the Standard Model predictions for these channels.

4 data tables

Cross sections for single-W production in the (E- NUEBAR Q QBAR + CC) and (E- NUEBAR LEPTON LEPTONBAR) + CC) channels.

Cross sections for the E NU E NU channel, which includes contributions from both single-W and from single-Z0 with a large interference bewteen the two processes.

Cross sections for single-Z0 production in the hadronic channel.

More…

Measurements of charged current reactions of nu/e on C-12.

The LSND collaboration Auerbach, L.B. ; Burman, R.L. ; Caldwell, D.O. ; et al.
Phys.Rev.C 64 (2001) 065501, 2001.
Inspire Record 557014 DOI 10.17182/hepdata.41705

Charged Current reactions of $\nu_e$ on $^{12}C$ have been studied using a $\mu^+$ decay-at-rest $\nu_e$ beam at the Los Alamos Neutron Science Center. The cross section for the exclusive reaction $^{12}C(\nu_e,e^-)^{12}N_{g.s.}$ was measured to be $(8.9\pm0.3\pm0.9)\times10^{-42}$ cm$^2$. The observed energy dependence of the cross section and angular distribution of the outgoing electron agree well with theoretical expectations. Measurements are also presented for inclusive transitions to $^{12}N$ excited states, $^{12}C(\nu_e,e^-)^{12}N^*$ and compared with theoretical expectations. The measured cross section, $(4.3\pm0.4\pm0.6)\times10^{-42}$ cm$^2$, is somewhat lower than previous measurements and than a continuum random phase approximation calculation. It is in better agreement with a recent shell model calculation.

1 data table

No description provided.


A measurement of the electric form-factor of the neutron through d(pol.)(e(pol.),e' n)p at Q**2 = 0.5-(GeV/c)**2.

The E93026 collaboration Zhu, H. ; Ahmidouch, A. ; Anklin, H. ; et al.
Phys.Rev.Lett. 87 (2001) 081801, 2001.
Inspire Record 556212 DOI 10.17182/hepdata.31418

We report the first measurement of the neutron electric form factor $G_E^n$ via $\vec{d}(\vec{e},e'n)p$ using a solid polarized target. $G_E^n$ was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, $^{15}$ND$_3$. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find $G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.)$ at $Q^2 = 0.495$ (GeV/c)$^2$.

1 data table

No description provided.


Multiplicity of charged and neutral pions in deep-inelastic scattering of 27.5-GeV positrons on hydrogen.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Eur.Phys.J.C 21 (2001) 599-606, 2001.
Inspire Record 554660 DOI 10.17182/hepdata.46860

Measurements of the individual multiplicities of pi+, pi- and pi0 produced in the deep-inelastic scattering of 27.5 GeV positrons on hydrogen are presented. The average charged pion multiplicity is the same as for neutral pions, up to approximately z= 0.7, where z is the fraction of the energy transferred in the scattering process carried by the pion. This result (below z= 0.7) is consistent with isospin invariance. The total energy fraction associated with charged and neutral pions is 0.51 +/- 0.01 (stat.) +/- 0.08 (syst.) and 0.26 +/- 0.01 (stat.) +/- 0.04 (syst.), respectively. For fixed z, the measured multiplicities depend on both the negative squared four momentum transfer Q^2 and the Bjorken variable x. The observed dependence on Q^2 agrees qualitatively with the expected behaviour based on NLO-QCD evolution, while the dependence on x is consistent with that of previous data after corrections have been made for the expected Q^2-dependence.

4 data tables

The measured PI0 multiplicity. Additional 9 PCT systematic error.

The measured multiplicity for charged pions, individually and the average. Additional 7 PCT systematic error.

The charged pion multiplicity as a function of x for four different z regions.

More…

A New Upper Limit for the Tau-Neutrino Magnetic Moment

The DONUT collaboration Schwienhorst, R. ; Rusack, R. ; Ciampa, D. ; et al.
Phys.Lett.B 513 (2001) 23-29, 2001.
Inspire Record 552998 DOI 10.17182/hepdata.41688

Using a prompt neutrino beam in which a nu_tau component was identified for the first time, the nu_tau magnetic moment was measured based on a search for an anomalous increase in the number of neutrino-electron interactions. One such event was observed when 2.3 were expected from background processes, giving an upper 90% confidence limit of 3.9x10^-7 Bohr magnetons.

1 data table

CONST(NAME=BOHR MAGNETON) is Bohr magneton.


Precise measurement of the positive muon anomalous magnetic moment.

The Muon g-2 collaboration Brown, H.N. ; Bunce, G. ; Carey, R.M. ; et al.
Phys.Rev.Lett. 86 (2001) 2227-2231, 2001.
Inspire Record 552899 DOI 10.17182/hepdata.41719

A precise measurement of the anomalous g value, a_mu=(g-2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron. The result a_mu^+=11 659 202(14)(6) X 10^{-10} (1.3 ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data. The current theoretical value from the standard model is a_mu(SM)=11 659 159.6(6.7) X 10^{-10} (0.57 ppm) and a_mu(exp)-a_mu(SM)=43(16) X 10^{-10} in which a_mu(exp) is the world average experimental value.

1 data table

The anomalous G value is related to the gyromagnetic ratio by MOM(N=A_MU) =(G-2)/2.


Double spin asymmetry in the cross section for exclusive rho0 production in lepton proton scattering.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Phys.Lett.B 513 (2001) 301-310, 2001.
Inspire Record 553236 DOI 10.17182/hepdata.46781

None

7 data tables

The photoabsorption asymmetry A1 for exclusive RHO0 production.

The photoabsorption asymmetry A1 for exclusive RHO0 production as a function of Q**2.

The photoabsorption asymmetry A1 for exclusive RHO0 production as a function of W.

More…