$\pi^+$-proton interactions at 500 MeV incident energy

Debaisieux, J. ; Grard, F. ; Heughebaert, J. ; et al.
Nucl.Phys. 63 (1965) 273-285, 1965.
Inspire Record 1400917 DOI 10.17182/hepdata.37098

We present results on $\pi^+$-p interactions at 500 MeV from an experiment performed with the Saclay 35 cm hydrogen bubble chamber. A total of 1840 events have been observed. The branching ratio for elastic events is equal to 0.883$\pm$0.008. Eight events are unambiguously attributed to the reaction $\pi^+p\to\pi^+p\gamma$. Cross sections for the various reactions are given. The elastic angular distribution has been determined up to cos$\theta$ = +0.975 and shows evidence for S, P, D waves in good agreement with the results obtained in other experiments. For the one-pion production reactions, the ratio of $\pi^0$ production to $\pi^+$ production is found equal to 4.1$\pm$0.8. This result and the corresponding distributions for momentum and angle of the secondaries are compared with the predictions of the isobaric models.

1 data table

No description provided.


Measures of the differential effective sections $\pi ±p$ to 410 MeV and 490 MeV forwards

Banner, M. ; Detoeuf, J.F. ; Fayoux, M.L. ; et al.
Nuovo Cim.A 50 (1967) 431-448, 1967.
Inspire Record 1185325 DOI 10.17182/hepdata.896

Measurements of π±p elastic differential cross-sections have been performed in the forward direction, using a missing-mass spark chamber spectrometer. The films have been seanned by an automatic apparatus. A phase-shift analysis of the experimental data has been done, leading to three solutions. Various experiments are proposed in order to resolve the ambiguities.

4 data tables

No description provided.

No description provided.

No description provided.

More…

$\pi^{-}p$ interactions at 720 MeV

Van de Walle, R.T. ; Pols, C.L.A. ; Schotanus, D.J. ; et al.
Nuovo Cim.A 53 (1968) 745-761, 1968.
Inspire Record 1185327 DOI 10.17182/hepdata.37519

The interactions of 720 MeV negative pions with protons were investigated using pictures from the 35 cm Saclay hydrogen bubble chamber. Partial cross-sections were determined with the following results: σ(elastic)=13.2±0.5) mb, σ(π−pπ0)=(5.25±0.30) mb, σ(π−π+n)=()7.17±0.35) mb σ (neutrals)=(9.9±0.7) mb, σ (2π production)=(1.03±0.13) mb. The elastic-scattering angular distribution was fitted with a fifth-order polynomial in cos θ* π which shows the effect of a significantF 5/2-D 5/2 interference contribution and predicts a value for (dσ/dΩ) (0°) in agreement with dispersion theory. For both single-π production channels, the two-body effective mass plots and c.m. angular distributions are presented, discussed and compared with the predictions from phase-space, the Olsson-Yodh isobar model and the pole model of isobar production. TheN *(3/2, 3/2) isobar is seen to play an important role in the ππN final states, but the agreement of the data with the existing isobar models and their assumptions is not satisfactory. A comparison of the different two-pion production cross-sections π−pπ−π+, π−pπ0π0 and π−π+nπ0 suggests a strong contribution of π−p→η0n to the π−π+nπ0 final state. An upper limit for σ(π−p→η0n) of (3.0±0.4) mb was obtained.

1 data table

No description provided.


Low energy analyzing powers in pion proton elastic scattering.

Meier, R. ; Croni, M. ; Bilger, R. ; et al.
Phys.Lett.B 588 (2004) 155-162, 2004.
Inspire Record 645151 DOI 10.17182/hepdata.26962

Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS as well as a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for pi+ p scattering, and at 67.3 and 87.2 MeV for pi- p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.

11 data tables

Analyzing power for PI+ P elastic scattering at incidient kinetic energy 87.2 MeV from the data set 1.

Analyzing power for PI+ P elastic scattering at incidient kinetic energy 68.4 MeV from the data set 1.

Analyzing power for PI+ P elastic scattering at incidient kinetic energy 57.2 MeV from the data set 1.

More…

Measurements of the proton elastic form-factors for 1-GeV/c**2 <= Q**2 <= 3-GeV/C**2 at SLAC

Walker, R.C. ; Filippone, B. ; Jourdan, J. ; et al.
Phys.Rev.D 49 (1994) 5671-5689, 1994.
Inspire Record 360764 DOI 10.17182/hepdata.22469

We report measurements of the proton form factors GEp and GMp extracted from elastic scattering in the range 1≤Q2≤3 (GeV/c)2 with total uncertainties < 15% in GEp and < 3% in GMp. Comparisons are made to theoretical models, including those based on perturbative QCD, vector-meson dominance, QCD sum rules, and diquark constituents in the proton. The results for GEp are somewhat larger than indicated by most theoretical parametrizations, and the ratios of the Pauli and Dirac form factors Q2(F2pF1p) are lower in value and demonstrate a weaker Q2 dependence than those predictions. A global extraction of the elastic form factors from several experiments in the range 0.1 0.1<Q2<10 (GeV/c)2 is also presented.

6 data tables

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

More…

Measurement of the analyzing power in anti-p p elastic scattering at 439-MeV/c and 544 MeV/c

Kunne, F. ; Bertini, R. ; Costa, M. ; et al.
Phys.Lett.B 261 (1991) 188-190, 1991.
Inspire Record 314564 DOI 10.17182/hepdata.29399

The angular distributions of the analyzing power A y and of the differential cross section d σ/ d Ω in p p elastic scattering have been measured at 439 and 544 MeV/c. The results of A y are compared with various theoretical models.

4 data tables

Data requested from authors.

Legendre fit polynomials.

Normalized Legendre fit polynomials.

More…

Polarized target asymmetry in pion proton bremsstrahlung at 298-MeV

Bosshard, A. ; Amsler, Claude ; Bistirlich, J.A. ; et al.
Phys.Rev.Lett. 64 (1990) 2619-2622, 1990.
Inspire Record 303404 DOI 10.17182/hepdata.22827

First data are presented for the polarized-target asymmetry in the reaction π+p→π+pγ at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment μΔ of the Δ++(1232 MeV). A fit of the asymmetry in the cross section d5σ/dΩπ dΩγ dk as a function of the photon energy k to predictions from a recent isobar-model calculation with μΔ as the only free parameter yields μΔ=1.64(±0.19expΔ,±0.14 theor)μp. Though this value agrees with bag-model corrections to the SU(6) prediction μΔ=2μp, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.

2 data tables

No description provided.

No description provided.


Full Angular Distribution of the Analyzing Power in $\bar{p} p$ Elastic Scattering at 697-{MeV}/$c$

Bertini, R. ; Costa, M. ; Perrot, F. ; et al.
Phys.Lett.B 228 (1989) 531-535, 1989.
Inspire Record 280163 DOI 10.17182/hepdata.29779

Full angular distributions of the differential cross-section dσ/dμ and of the analysing power A y in p p elastic scattering have been measured at 697 MeV/ c . The results of A y are compared with the predictions of various theoretical models.

3 data tables

No description provided.

No description provided.

Legendre Polynomials from fit to angular distribution (LEG(L=0)=3.59 +- 0.02).


The Spin Correlation Parameter and Analyzing Power in $n p$ Elastic Scattering at Intermediate-energies

Abegg, R. ; Ahmad, M. ; Bandyopadhyay, D. ; et al.
Phys.Rev.C 40 (1989) 2684-2696, 1989.
Inspire Record 281880 DOI 10.17182/hepdata.26220

In order to improve existing I=0 phase shift solutions, the spin correlation parameter ANN and the analyzing powers A0N and AN0 have been measured in n-p elastic scattering over an angular range of 50°–150° (c.m.) at three neutron energies (220, 325, and 425 MeV) to an absolute accuracy of ±0.03. The data have a profound effect on various phase parameters, particularly the P11, D23, and ε1 phase parameters which in some cases change by almost a degree. With the exception of the highest energy, the data support the predictions of the latest version of the Bonn potential. Also, the analyzing power data (A0N and AN0) measured at 477 MeV in a different experiment over a limited angular range [60°–80° (c.m.)] are reported here.

10 data tables

The beam analysing power at incident kinetic energy 220 MeV. Additional systematic uncertainty of +- 0.015 and a scalar error of 3.5 PCT.

The beam analysing power at incident kinetic energy 325 MeV. Additional systematic uncertainty of +- 0.018 and a scalar error of 3.1 PCT.

The beam analysing power at incident kinetic energy 425 MeV. Additional systematic uncertainty of +- 0.022 and a scalar error of 3.3 PCT.

More…

Measurement of the Spin Correlation Parameter A(00nn ($P P$ in a Large Angular Region Between 0.88-{GeV} and 2.7-{GeV}

Lehar, F. ; De Lesquen, A. ; Meyer, J.P. ; et al.
Nucl.Phys.B 294 (1987) 1013-1021, 1987.
Inspire Record 255230 DOI 10.17182/hepdata.33526

The spin correlation parameter A oonn for pp elastic scattering was measured at 0.88, 1.1, 1.3, 1.6, 1.8, 2.1, 2.4 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. At the first two energies, the new measurements at θ CM < 50° complete our previous data from 45° to 90°. Between 1.3 and 2.7 GeV the measurements were performed in two overlapping angular regions covering together the CM angles from 28° (at the lower energies) or 18° (at the highest energy) to > 90°. At all energies above 1.3 GeV the angular distribution shows a dip at fixed four-momentum transfer − t ∼ 0.90 (GeV/ c ) 2 . The value of A oonn ( θ CM = 90°) decreases from A oonn (90°) ≅ 0.57 at 0.88 GeV to A oonn (90°) ≅ 0.35 at 2.7 GeV. However, the large value found at 1.8 GeV indicates that the energy dependence is not monotonic.

8 data tables

Errors are statistical plus random-like instrumental uncertainties.

Errors are statistical plus random-like instrumental uncertainties.

Errors are statistical plus random-like instrumental uncertainties.

More…