A search for the production of a top quark in association with a photon and additional jets via flavor changing neutral current interactions is presented. The analysis uses proton-proton collision data recorded by the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The search is performed by looking for processes where a single top quark is produced in association with a photon, or a pair of top quarks where one of the top quarks decays into a photon and an up or charm quark. Events with an electron or a muon, a photon, one or more jets, and missing transverse momentum are selected. Multivariate analysis techniques are used to discriminate signal and standard model background processes. No significant deviation is observed over the predicted background. Observed (expected) upper limits are set on the branching fractions of top quark decays: $\mathcal{B}$(t $\to$ u$\gamma$) $\lt$ 0.95 $\times$ 10$^{-5}$ (1.20 $\times$ 10$^{-5}$) and $\mathcal{B}$(t $\to$ c$\gamma$) $\lt$ 1.51 $\times$ 10$^{-5}$ (1.54 $\times$ 10$^{-5}$) at 95% confidence level, assuming a single nonzero coupling at a time. The obtained limit for $\mathcal{B}$(t $\to$ u$\gamma$) is similar to the current best limit, while the limit for $\mathcal{B}$(t $\to$ c$\gamma$) is significantly tighter than previous results.
A search for a new boson X is presented using CERN LHC proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016-2018, and corresponding to an integrated luminosity of 138 fb$^{-1}$. The resonance X decays into either a pair of Higgs bosons HH of mass 125 GeV or an H and a new spin-0 boson Y. One H subsequently decays to a pair of photons, and the second H or Y, to a pair of bottom quarks. The explored mass ranges of X are 260-1000 GeV and 300-1000 GeV, for decays to HH and to HY, respectively, with the Y mass range being 90-800 GeV. For a spin-0 X hypothesis, the 95% confidence level upper limit on the product of its production cross section and decay branching fraction is observed to be within 0.90-0.04 fb, depending on the masses of X and Y. The largest deviation from the background-only hypothesis with a local (global) significance of 3.8 (below 2.8) standard deviations is observed for X and Y masses of 650 and 90 GeV, respectively. The limits are interpreted using several models of new physics.
Searches for pair-produced multijet signatures using data corresponding to an integrated luminosity of 128 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV are presented. A data scouting technique is employed to record events with low jet scalar transverse momentum sum values. The electroweak production of particles predicted in $R$-parity violating supersymmetric models is probed for the first time with fully hadronic final states. This is the first search for prompt hadronically decaying mass-degenerate higgsinos, and extends current exclusions on $R$-parity violating top squarks and gluinos.
A search for the lepton flavor violating $\tau$$\to$ 3$\mu$ decay is performed using proton-proton collision events at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2017-2018, corresponding to an integrated luminosity of 97.7 fb$^{-1}$. Tau leptons produced in both heavy-flavor hadron and W boson decays are exploited in the analysis. No evidence for the decay is observed. The results of this search are combined with an earlier null result based on data collected in 2016 to obtain a total integrated luminosity of 131 fb$^{-1}$. The observed (expected) upper limits on the branching fraction $\mathcal{B}$($\tau$$\to$ 3$\mu$) at confidence levels of 90 and 95% are 2.9 $\times$ 10$^{-8}$ (2.4 $\times$ 10$^{-8}$) and 3.6 $\times$ 10$^{-8}$ (3.0 $\times$ 10$^{-8}$), respectively.
A search for long-lived heavy neutrinos (N) in the decays of B mesons produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV is presented. The data sample corresponds to an integrated luminosity of 41.6 fb$^{-1}$ collected in 2018 by the CMS experiment at the CERN LHC, using a dedicated data stream that enhances the number of recorded events containing B mesons. The search probes heavy neutrinos with masses in the range 1 $\lt$$m_\mathrm{N}$$\lt$ 3 GeV and decay lengths in the range 10$^{-2}$$\lt$$c\tau_\mathrm{N}$$\lt$ 10$^{4}$ mm, where $\tau_\mathrm{N}$ is the N proper mean lifetime. Signal events are defined by the signature B $\to$$\ell_\mathrm{B}$NX; N $\to$$\ell^{\pm} \pi^{\mp}$, where the leptons $\ell_\mathrm{B}$ and $\ell$ can be either a muon or an electron, provided that at least one of them is a muon. The hadronic recoil system, X, is treated inclusively and is not reconstructed. No significant excess of events over the standard model background is observed in any of the $\ell^{\pm} \pi^{\mp}$ invariant mass distributions. Limits at 95% confidence level on the sum of the squares of the mixing amplitudes between heavy and light neutrinos, $\vert V_\mathrm{N}\vert^2$, and on $c\tau$ are obtained in different mixing scenarios for both Majorana and Dirac-like N particles. The most stringent upper limit $\vert V_\mathrm{N}\vert^2$ $\lt$ 2.0 $\times$ 10$^{-5}$ is obtained at $m_\mathrm{N}$ = 1.95 GeV for the Majorana case where N mixes exclusively with muon neutrinos. The limits on $\vert V_\mathrm{N}\vert^2$ for masses 1 $\lt$ $m_\mathrm{N}$ $\lt$ 1.7 GeV are the most stringent from a collider experiment to date.
A search for pair production of scalar and vector leptoquarks (LQs) each decaying to a muon and a bottom quark is performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. No excess above standard model expectation is observed. Scalar (vector) LQs with masses less than 1810 (2120) GeV are excluded at 95% confidence level, assuming a 100% branching fraction of the LQ decaying to a muon and a bottom quark. These limits represent the most stringent to date.
A search for the production of long-lived particles in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC is presented. The search is based on data collected by the CMS experiment in 2016-2018, corresponding to a total integrated luminosity of 137 fb$^{-1}$. This search is designed to be sensitive to long-lived particles with mean proper decay lengths between 0.1 and 1000 mm, whose decay products produce a final state with at least one displaced vertex and missing transverse momentum. A machine learning algorithm, which improves the background rejection power by more than an order of magnitude, is applied to improve the sensitivity. The observation is consistent with the standard model background prediction, and the results are used to constrain split supersymmetry (SUSY) and gauge-mediated SUSY breaking models with different gluino mean proper decay lengths and masses. This search is the first CMS search that shows sensitivity to hadronically decaying long-lived particles from signals with mass differences between the gluino and neutralino below 100 GeV. It sets the most stringent limits to date for split-SUSY models and gauge-mediated SUSY breaking models with gluino proper decay length less than 6 mm.
The first search for scalar leptoquarks produced in $\tau$-lepton-quark collisions is presented. It is based on a set of proton-proton collision data recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$. The reconstructed final state consists of a jet, significant missing transverse momentum, and a $\tau$ lepton reconstructed through its hadronic or leptonic decays. Limits are set on the product of the leptoquark production cross section and branching fraction and interpreted as exclusions in the plane of the leptoquark mass and the leptoquark-$\tau$-quark coupling strength.
A search for long-lived particles (LLPs) decaying in the CMS muon detectors is presented. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded at the LHC in 2016-2018, is used. The decays of LLPs are reconstructed as high multiplicity clusters of hits in the muon detectors. In the context of twin Higgs models, the search is sensitive to LLP masses from 0.4 to 55 GeV and a broad range of LLP decay modes, including decays to hadrons, $\tau$ leptons, electrons, or photons. No excess of events above the standard model background is observed. The most stringent limits to date from LHC data are set on the branching fraction of the Higgs boson decay to a pair of LLPs with masses below 10 GeV. This search also provides the best limits for various intervals of LLP proper decay length and mass. Finally, this search sets the first limits at the LHC on a dark quantum chromodynamic sector whose particles couple to the Higgs boson through gluon, Higgs boson, photon, vector, and dark-photon portals, and is sensitive to branching fractions of the Higgs boson to dark quarks as low as 2 $\times$ 10$^{-3}$.
A search for resonances in top quark pair ($\text{t}\bar{\text{t}}$) production in final states with two charged leptons and multiple jets is presented, based on proton-proton collision data collected by the CMS experiment at the CERN LHC at $\sqrt{s}$ = 13 TeV, corresponding to 138 fb$^{-1}$. The analysis explores the invariant mass of the $\text{t}\bar{\text{t}}$ system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic $\text{t}\bar{\text{t}}$ threshold compared to the nonresonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ($^1$S$^{[1]}_0$) quasi-bound toponium state, as predicted by nonrelativistic quantum chromodynamics. Using a simplified model for $^1$S$^{[1]}_0$ toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8 $^{+1.2}_{-1.4}$ pb.