A thin polyethylene target was exposed to the internal proton beam of the Serpukhov accelerator at 30, 50, and 70 GeV. The wide-angle recoil protons were registered by photoemulsion stacks and the differential cross sections of the elastic p−p scattering in the range of four-momentum transfer squared 0.0025≤|t|≤0.12 (GeV/c)2 were measured. The ratio of the real to the imaginary part of the forward nuclear amplitude α, the slope parameter of the diffraction peak b, and the total elastic cross section σel were found to be as follows: at 30 GeV, α=−0.183±0.051, b=10.61±0.27 (GeV/c)−2, σel=7.7±0.2 mb; at 50 GeV, α=−0.068±0.040, b=11.25±0.28 (GeV/c)−2, σel=7.0±0.2 mb; at 70 GeV, α=−0.104±0.065, b=11.21±0.40 (GeV/c)−2, σel=7.1±0.2 mb.
No description provided.
No description provided.
No description provided.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.
Results of the exponential function $A e^{-B(t)|t|}$ fit to the elastic differential cross section data as well as the integrated fiducial cross section are listed. Also listed are the corresponding values of the statistical and systematic uncertainties. The scale (luminosity and trigger efficiency) uncertainty of 2.5% applicable to the fit parameter $A$ and fiducial cross section $\sigma^\mathrm{fid}_\mathrm{el}$ is not included in the full error.
None
No description provided.
None
No description provided.
The differential cross-sections in the range of four momentum transfer squared from 0.003 to 0.120 (GeV c) 2 were measured at 30, 50 and 70 GeV by using a thin polyethilene target in the internal proton beam of the Serpukhov accelerator. The slope parameter, the ratio of the real to the imaginary part of the forward amplitude and the cross-section in the diffraction cone were measured.
No description provided.
ASSUMING UNIFORM SLOPE.
None
DATA ON THE SUM OF ELASTIC AND QUASIELASTIC CROSS SECTIONS.
Differential cross sections for elastic K + p scattering have been measured at nineteen momenta between 0.7 and 1.9 GeV/ c . The data represent between 10 thousand and 20 thousand elastic events at each momentum and cover a wide range of scattering angles ( −0.98 ≲ cos θ ∗ ≲ 0.95 ). A computer controlled system of scintillation counters and acoustic spark chambers was used to detect the elastic events. Various internal consistency checks indicate that the absolute normalization of the data is accurate to within 2–3%. The cross sections show a smooth transition from an isotropic angular distribution to a dominant forward peak over the range covered by the experiment. Phase-shift analyses including these results show little evidence for a direct-channel resonance, and fitting the results by t - and u -channel exchange processes alone gives a good fit.
No description provided.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
REAL/IMAG OF FORWARD AMPLITUDE FROM FIT TO D(SIG)/DT.
Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.
No description provided.
No description provided.
No description provided.