The dissociation of virtual photons, $\gamma^{\star} p \to X p$, in events with a large rapidity gap between $X$ and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities $Q^2>2$ GeV$^2$ and $\gamma^{\star} p$ centre-of-mass energies $40<W<240$ GeV, with $M_X>2$ GeV, where $M_X$ is the mass of the hadronic final state, $X$. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of $t$, the squared four-momentum transfer at the proton vertex and $\Phi$, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of $Q^2$ and $\xpom$, the fraction of the proton's momentum carried by the diffractive exchange, as well as $\beta$, the Bjorken variable defined with respect to the diffractive exchange.
The differential cross section DSIG/DT for the LRG and the LPS data samples.
The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).
The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).
Short overview of experiments with SND detector at VEPP-2M e^+e^- collider in the energy range 2E = 400 - 1400 MeV and preliminary results of data analysis are presented.
No description provided.
No description provided.
No description provided.
The reaction π−p→η′η′n has been studied atpπ=37 GeV/c. Total of 14 events of this reaction have been selected. It has been shown that in the effective mass spectrum of the η′η′ system the events are concentrated mainly near the reaction threshold, which might be caused by the decayX(1910)→η′η′. The reaction cross-section has been evaluated: σ(π−p→η′η′n)=110±40 nb.
No description provided.
No description provided.
None
No description provided.
No description provided.
FROM EXPONENTIAL FIT OF D(SIG)/D(T) IN RANGE 0. < ABS(T) < 1. GEV.
None
No description provided.
No description provided.
Energy, charge and strangeness flow inK+p interactions at 32 and 70 GeV/c, and π+p interactions at 32 GeV/c are studied in terms of the angular variable λ=|x|/pT. The data ondQ/dλ anddE/dλ show only a weak indication of scale breaking between 32 and 70 GeV/c. For inclusive “non-diffractive”, inclusive “diffractive” and exclusive “non-diffractive” jets, the fraction of charge in any angular region ΔΩ away from the central region is found to be proportional to the energy fraction in the same interval. The data ondQ/dE versus λ are compatible with some versions of dual-sheet models and agree also with the LUND Monte-Carlo model. The data are also compared with\(v(\bar v)p\) interactions in BEBC. In exclusive channels the average ratiodQ/dS=0.78±0.04 is consistent, in the framework of fragmentation models, with a larger probability for the fragmentation of the\(\bar s\)-valence quark than theu-valence quark in theK+-meson.
CHARGE FLOW IN NONDIFFRACTIVE PROTON-LIKE AND KAON-LIKE JETS.
CHARGE FLOW IN NONDIFFRACTIVE PROTON-LIKE AND KAON-LIKE JETS.
CHARGE FLOW IN NONDIFFRACTIVE PROTON-LIKE AND KAON-LIKE JETS.
None
AVERAGE TARGET POLARIZATION WAS 76 +- 3 PCT.
No description provided.
The energy dependence of the modulus and phase of the K L 0 -K S 0 regeneration amplitude on hydrogen in the range of 14–50 GeV has been investigated at the Serpukhov 70 GeV accelerator. It has been established that the modulus of the modified regeneration amplitude decreases with increasing momentum as 2|ƒ 21 0 (p)|/k = (0.84 ± 0.42) · p −0.50±0.15 mb . The amplitude phase is energy-independent and its mean value is ϕ 21 0 = −132° ± 5°. The results obtained are compared with other experiments and with predictions of different theoretical models.
TABLE ALSO CALCULATES FORWARD DIFFERENTIAL CROSS SECTION AND SIG(AK0 P) - SIG(K0 P) TOTAL CROSS SECTION DIFFERENCES.
None
No description provided.
No description provided.
No description provided.
Cross-section data are presented for pion proton charge-exchange scattering in the momentum range 20 to 50 GeV/ c . The experiments were performed at 70 GeV IHEP accelerator.
No description provided.