Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adolfsson, J. ; et al.
Eur.Phys.J.C 77 (2017) 852, 2017.
Inspire Record 1614477 DOI 10.17182/hepdata.78802

We present the charged-particle multiplicity distributions over a wide pseudorapidity range ($-3.4<\eta<5.0$) for pp collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.

90 data tables

Multiplicity distribution in the pseudorapidity region -2.0 to 2.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -2.4 to 2.4 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -3.0 to 3.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

More…

Study of the process $e^+ e^- \to K^0_{S}K^0_{L}$ in the center-of-mass energy range 1004--1060 MeV with the CMD-3 detector at the VEPP-2000 $e^+ e^-$ collider

The CMD-3 collaboration Kozyrev, E.A. ; Solodov, E.P. ; Amirkhanov, A.N. ; et al.
Phys.Lett.B 760 (2016) 314-319, 2016.
Inspire Record 1444990 DOI 10.17182/hepdata.78538

The $e^+ e^- \to K^0_{S}K^0_{L}$ cross section has been measured in the center-of-mass energy range 1004--1060 MeV at 25 energy points using $6.1 \times 10^5$ events with $K^0_{S}\to \pi^+\pi^-$ decay. The analysis is based on 5.9 pb$^{-1}$ of an integrated luminosity collected with the CMD-3 detector at the VEPP-2000 $e^+ e^-$ collider. To obtain $\phi(1020)$ meson parameters the measured cross section is approximated according to the Vector Meson Dominance model as a sum of the $\rho, \omega, \phi$-like amplitudes and their excitations. This is the most precise measurement of the $e^+ e^- \to K^0_{S}K^0_{L}$ cross section with a 1.8\% systematic uncertainty.

1 data table

The c.m. energy $E_{\rm c.m.}$, number of selected signal events $N$, detection efficiency $\epsilon_{\rm MC}$, radiative-correction factor 1 + $\delta_{\rm rad.}$, integrated luminosity $L$, and Born cross section $\sigma$ of the process $e^+ e^- \to K^0_{S}K^0_{L}$.


Measurement of $R_{\text{uds}}$ and $R$ between 3.12 and 3.72 GeV at the KEDR detector

Anashin, V.V. ; Aulchenko, V.M. ; Baldin, E.M. ; et al.
Phys.Lett.B 753 (2016) 533-541, 2016.
Inspire Record 1397002 DOI 10.17182/hepdata.76727

Using the KEDR detector at the VEPP-4M $e^+e^-$ collider, we have measured the values of $R_{\text{uds}}$ and $R$ at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than $3.3\%$ at most of energy points with a systematic uncertainty of about $2.1\%$. At the moment it is the most accurate measurement of $R(s)$ in this energy range.

1 data table

Measured values of $R_{\rm{uds}}(s)$ and $R(s)$ with statistical and systematic uncertainties.


Measurement of the $e^+e^- \to K^+K^-\pi^+\pi^-$ cross section with the CMD-3 detector at the VEPP-2000 collider

Shemyakin, D.N. ; Fedotovich, G.V. ; Akhmetshin, R.R. ; et al.
Phys.Lett.B 756 (2016) 153-160, 2016.
Inspire Record 1395968 DOI 10.17182/hepdata.76553

The process $e^+e^- \to K^+K^-\pi^+\pi^-$ has been studied in the center-of-mass energy range from 1500 to 2000\,MeV using a data sample of 23 pb$^{-1}$ collected with the CMD-3 detector at the VEPP-2000 $e^+e^-$ collider. Using about 24000 selected events, the $e^+e^- \to K^+K^-\pi^+\pi^-$ cross section has been measured with a systematic uncertainty decreasing from 11.7\% at 1500-1600\,MeV to 6.1\% above 1800\,MeV. A preliminary study of $K^+K^-\pi^+\pi^-$ production dynamics has been performed.

1 data table

Center-of-mass energy, integrated luminosity, number of four-track events, number of three-track events, detection efficiency, radiative correction and Born cross section of the process $e^{+}e^{-} \to K^{+} K^{-} \pi^{+} \pi^{-}$. Errors are statistical only.


Study of Dynamics of $D^0 \to K^- e^+ \nu_{e}$ and $D^0\to\pi^- e^+ \nu_{e}$ Decays

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 92 (2015) 072012, 2015.
Inspire Record 1391138 DOI 10.17182/hepdata.74726

In an analysis of a 2.92~fb$^{-1}$ data sample taken at 3.773~GeV with the BESIII detector operated at the BEPCII collider, we measure the absolute decay branching fractions to be $\mathcal B(D^0 \to K^-e^+\nu_e)=(3.505\pm 0.014 \pm 0.033)\%$ and $\mathcal B(D^0 \to \pi^-e^+\nu_e)=(0.295\pm 0.004\pm 0.003)\%$. From a study of the differential decay rates we obtain the products of hadronic form factor and the magnitude of the CKM matrix element $f_{+}^K(0)|V_{cs}|=0.7172\pm0.0025\pm 0.0035$ and $f_{+}^{\pi}(0)|V_{cd}|=0.1435\pm0.0018\pm 0.0009$. Combining these products with the values of $|V_{cs(d)}|$ from the SM constraint fit, we extract the hadronic form factors $f^K_+(0) = 0.7368\pm0.0026\pm 0.0036$ and $f^\pi_+(0) = 0.6372\pm0.0080\pm 0.0044$, and their ratio $f_+^{\pi}(0)/f_+^{K}(0)=0.8649\pm 0.0112\pm 0.0073$. These form factors and their ratio are used to test unquenched Lattice QCD calculations of the form factors and a light cone sum rule (LCSR) calculation of their ratio. The measured value of $f_+^{K(\pi)}(0) |V_{cs(d)}|$ and the lattice QCD value for $f^{K(\pi)}_+(0)$ are used to extract values of the CKM matrix elements of $|V_{cs}|=0.9601 \pm 0.0033 \pm 0.0047 \pm 0.0239$ and $|V_{cd}|=0.2155 \pm 0.0027 \pm 0.0014 \pm 0.0094$, where the third errors are due to the uncertainties in lattice QCD calculations of the form factors. Using the LCSR value for $f_+^\pi(0)/f_+^K(0)$, we determine the ratio $|V_{cd}|/|V_{cs}|=0.238\pm 0.004\pm 0.002\pm 0.011$, where the third error is from the uncertainty in the LCSR normalization. In addition, we measure form factor parameters for three different theoretical models that describe the weak hadronic charged currents for these two semileptonic decays. All of these measurements are the most precise to date.

2 data tables

Summary of the range of each $q^2$ bin, the number of the observed events $N_{\rm observed}$, the number of produced events $N_{\rm produced}$, and the partial decay rate $\Delta\Gamma$ in each $q^2$ bin for $D^0\to K^-e^+\nu_e$ decays.

Summary of the range of each $q^2$ bin, the number of the observed events $N_{\rm observed}$, the number of produced events $N_{\rm produced}$, and the partial decay rate $\Delta\Gamma$ in each $q^2$ bin for $D^0\to \pi^-e^+\nu_e$ decays.


Version 4
Measurement of the $e^+ e^− \to \pi^+ \pi^−$ cross section between 600 and 900 MeV using initial state radiation

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Adlarson, P. ; et al.
Phys.Lett.B 753 (2016) 629-638, 2016.
Inspire Record 1385603 DOI 10.17182/hepdata.73898

In Phys. Lett. B 753, 629-638 (2016) [arXiv:1507.08188] the BESIII collaboration published a cross section measurement of the process $e^+e^-\to \pi^+ \pi^-$ in the energy range between 600 and 900 MeV. In this erratum we report a corrected evaluation of the statistical errors in terms of a fully propagated covariance matrix. The correction also yields a reduced statistical uncertainty for the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, which now reads as $a_\mu^{\pi\pi\mathrm{, LO}}(600 - 900\,\mathrm{MeV}) = (368.2 \pm 1.5_{\rm stat} \pm 3.3_{\rm syst})\times 10^{-10}$. The central values of the cross section measurement and of $a_\mu^{\pi\pi\mathrm{, LO}}$, as well as the systematic uncertainties remain unchanged.

4 data tables

Bare cross section $\sigma^\mathrm{bare}(e^+e^-\to\pi^+\pi^-(\gamma_\mathrm{FSR}))$ of the process $e^+e^-\to\pi^+\pi^-$ measured using the initial state radiation method. The data is corrected concerning final state radiation and vacuum polarization effects. The final state radiation is added using the Schwinger term at born level.

Statistical covariance matrix of the bare cross section $\sigma^\mathrm{bare}(e^+e^-\to\pi^+\pi^-(\gamma_\mathrm{FSR}))$.

Pion form factor $|F_\pi|^2$ measured using the initial state radiation method. The data is corrected concerning vacuum polarization effects.

More…

Study of the process $e^+e^-\to p\bar{p}$ in the c.m. energy range from threshold to 2 GeV with the CMD-3 detector

The CMD-3 collaboration Akhmetshin, R.R. ; Amirkhanov, A.N. ; Anisenkov, A.V. ; et al.
Phys.Lett.B 759 (2016) 634-640, 2016.
Inspire Record 1385598 DOI 10.17182/hepdata.73805

Using a data sample of 6.8 pb$^{-1}$ collected with the CMD-3 detector at the VEPP-2000 $e^+e^-$ collider we select about 2700 events of the $e^+e^- \to p\bar{p}$ process and measure its cross section at 12 energy ponts with about 6\% systematic uncertainty. From the angular distribution of produced nucleons we obtain the ratio $|G_{E}/G_{M}| = 1.49 \pm 0.23 \pm 0.30$.

2 data tables

The c.m. energy, beam energy shift, luminosity, number of selected $e^+e^- \to p\bar{p}$ events, detection efficiency, radiative correction, and cross section with statistical and systematic errors. The data for collinear type events.

The c.m. energy, luminosity, number of signal events, fraction of antiprotons stopped in beam pipe and DC inner shell, efficiency, cross section with statistical and systematic errors, for annihilation events.


Measurement of azimuthal asymmetries in inclusive charged dipion production in $e^+e^-$ annihilations at $\sqrt{s}$ = 3.65 GeV

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.Lett. 116 (2016) 042001, 2016.
Inspire Record 1384778 DOI 10.17182/hepdata.73802

We present a measurement of the azimuthal asymmetries of two charged pions in the inclusive process $e^+e^-\rightarrow \pi\pi X$ based on a data set of 62 $\rm{pb}^{-1}$ at the center-of-mass energy $\sqrt{s}=3.65$ GeV collected with the BESIII detector. These asymmetries can be attributed to the Collins fragmentation function. We observe a nonzero asymmetry, which increases with increasing pion momentum. As our energy scale is close to that of the existing semi-inclusive deep inelastic scattering experimental data, the measured asymmetries are important inputs for the global analysis of extracting the quark transversity distribution inside the nucleon and are valuable to explore the energy evolution of the spin-dependent fragmentation function.

2 data tables

Results of $A_{\rm UL}$ and $A_{\rm UC}$ in each ($z_{1},z_{2}$) and $p_{t}$ bin. The averages $\langle z_i\rangle$, $\langle p_t\rangle$ and $\rm \frac{\langle sin^2\theta_{2}\rangle }{\rm \langle 1+cos^2\theta_{2} \rangle }$ are also given.

Results of $A_{\rm UL}$ and $A_{\rm UC}$ in each ($z_{1},z_{2}$) and $p_{t}$ bin. The averages $\langle z_i\rangle$, $\langle p_t\rangle$ and $\rm \frac{\langle sin^2\theta_{2}\rangle }{\rm \langle 1+cos^2\theta_{2} \rangle }$ are also given.


Observation of $Z_c(3900)^{0}$ in $e^+e^-\to\pi^0\pi^0 J/\psi$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.Lett. 115 (2015) 112003, 2015.
Inspire Record 1377204 DOI 10.17182/hepdata.73771

Using a data sample collected with the BESIII detector operating at the BEPCII storage ring, we observe a new neutral state $Z_c(3900)^{0}$ with a significance of $10.4\sigma$. The mass and width are measured to be $3894.8\pm2.3\pm3.2$ MeV/$c^2$ and $29.6\pm8.2\pm8.2$~MeV, respectively, where the first error is statistical and the second systematic. The Born cross section for $e^+e^-\to\pi^0\pi^0 J/\psi$ and the fraction of it attributable to $\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi$ in the range $E_{cm}=4.19-4.42$ GeV are also determined. We interpret this state as the neutral partner of the four-quark candidate $Z_c(3900)^\pm$.

1 data table

Efficiencies, yields, $R=\frac{\sigma(e^+e^-\to\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi)}{\sigma(e^+e^-\to\pi^0\pi^0 J/\psi)}$, and $\pi^0\pi^0 J/\psi$ Born cross sections at each energy point. For $N(Z_c^0)$ and $N(\pi^0\pi^0 J/\psi)$ errors and upper limits are statistical only. For $R$ and $\sigma_{\rm Born}$, the first errors and statistical and second errors are systematic. The statistical uncertainties on the efficiencies are negligible. Upper limits of $R$ (90$\%$ confidence level) include systematic errors.


Search for the isospin violating decay Y(4260)→J/ψηπ$^0$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 92 (2015) 012008, 2015.
Inspire Record 1366025 DOI 10.17182/hepdata.73692

Using data samples collected at center of mass energies of $\sqrt{s}$ = 4.009, 4.226, 4.257, 4.358, 4.416 and 4.599 GeV with the BESIII detector operating at the BEPCII storage ring, we search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$. No signal is observed, and upper limits on the cross section $\sigma(e^{+}e^{-}\rightarrow J/\psi \eta \pi^{0})$ at the 90\% confidence level are determined to be 3.6, 1.7, 2.4, 1.4, 0.9 and 1.9 pb, respectively.

1 data table

Results on $e^{+}e^{-}\rightarrow J/\psi\eta\pi^{0}$. Listed in the table are the integrated luminosity $\cal{L}$, radiative correction factor (1+$\delta^{r}$) taken from QED calculation assuming the $Y(4260)$ cross section follows a Breit$-$Wigner line shape, vacuum polarization factor (1+$\delta^{v}$), average efficiency ($\epsilon^{ee}{\cal B}^{ee}$ + $\epsilon^{\mu\mu}{\cal B}^{\mu\mu}$), number of observed events $N^\text{obs}$, number of estimated background events $N^\text{bkg}$, the efficiency corrected upper limits on the number of signal events $N^\text{up}$, and upper limits on the Born cross section $\sigma^\text{Born}_\text{UL}$ (at the 90 $\%$ C.L.) at each energy point.