A measurement of the beauty production cross section in ep collisions at a centre-of-mass energy of 319 GeV is presented. The data were collected with the H1 detector at the HERA collider in the years 1999-2000. Events are selected by requiring the presence of jets and muons in the final state. Both the long lifetime and the large mass of b-flavoured hadrons are exploited to identify events containing beauty quarks. Differential cross sections are measured in photoproduction, with photon virtualities Q^2 < 1 GeV^2, and in deep inelastic scattering, where 2 < Q^2 < 100 GeV^2. The results are compared with perturbative QCD calculations to leading and next-to-leading order. The predictions are found to be somewhat lower than the data.
Muons and jets from beauty photoproduction, pseudorapidity.
Muons and jets from beauty photoproduction, muon transverse momentum.
Muons and jets from beauty photoproduction, leading jet transverse momentum
A measurement is presented of elastic deeply virtual Compton scattering \gamma* p \to \gamma p made using e^+ p collision data corresponding to a luminosity of 46.5 pb^{-1}, taken with the H1 detector at HERA. The cross section is measured as a function of the photon virtuality, Q^2, the invariant mass of the \gamma* p system, W, and for the first time, differentially in the squared momentum transfer at the proton vertex, t, in the kinematic range 2 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2. QCD based calculations at next-to-leading order using generalized parton distributions can describe the data, as can colour dipole model predictions.
Cross section differential in T for the 1996-1997 data sample.
Cross section differential in T for the 1999-2000 data sample.
Cross section differential in T for the combined data sample.
Measurements are presented of inclusive charm and beauty cross sections in e^+p collisions at HERA for values of photon virtuality 12 \le Q^2 \le 60 GeV^2 and of the Bjorken scaling variable 0.0002 \le x \le 0.005. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 vertex detector. Values for the structure functions F_2^{c\bar{c}} and F_2^{b\bar{b}} are obtained. This is the first measurement of F_2^{b\bar{b}} in this kinematic range. The results are found to be compatible with the predictions of perturbative quantum chromodynamics and withprevious measurements of F_2^{c\bar{c}}.
Measured NC reduced cross section for charm quarks.
Measuredstructure function F2 for charm quarks.
Measured NC reduced cross section for BOTTOM quarks.
The production of forward jets has been measured in deep inelastic ep collisions at HERA. The results are presented in terms of single differential cross sections as a function of the Bjorken scaling variable (x_{Bj}) and as triple differential cross sections d^3 \sigma / dx_{Bj} dQ^2 dp_{t,jet}^2, where Q^2 is the four momentum transfer squared and p_{t,jet}^2 is the squared transverse momentum of the forward jet. Also cross sections for events with a di-jet system in addition to the forward jet are measured as a function of the rapidity separation between the forward jet and the two additional jets. The measurements are compared with next-to-leading order QCD calculations and with the predictions of various QCD-based models.
Single differential forward jet cross section as a function of Bjorken X.
Triple differential cross section.
Triple differential cross section.
Cross sections for elastic production of J/Psi mesons in photoproduction and electroproduction are measured in electron proton collisions at HERA using an integrated luminosity of 55 pb^{-1}. Results are presented for photon virtualities Q^2 up to 80 GeV^2. The dependence on the photon-proton centre of mass energy W_{gamma p} is analysed in the range 40 < \Wgp < 305 GeV in photoproduction and 40 < \Wgp < 160 GeV in electroproduction. The \Wgp dependences of the cross sections do not change significantly with Q^2 and can be described by models based on perturbative QCD. Within such models, the data show a high sensitivity to the gluon density of the proton in the domain of low Bjorken x and low Q^2. Differential cross sections d\sigma/dt, where t is the squared four-momentum transfer at the proton vertex, are measured in the range |t|<1.2 GeV^2 as functions of \Wgp and Q^2. Effective Pomeron trajectories are determined for photoproduction and electroproduction. The J/Psi production and decay angular distributions are consistent with s-channel helicity conservation. The ratio of the cross sections for longitudinally and transversely polarised photons is measured as a function of Q^2 and is found to be described by perturbative QCD based models.
Cross section for elastic J/PSI photoproduction in Q**2 bins for W = 90 GeV and ABS(T) < 1.2 GeV**2.
Cross section for elastic J/PSI photoproduction in W bins for ABS(T) < 1.2 GeV**2 and Q**2 < 1 GeV**2.. There are two cross sections for the 205 to 235 GeV bin due to overlapping data sets. The mean is 151 +- 8 (DSYS=20) nb.
Cross section for elastic J/PSI photoproduction as a function of W in Q**2 bins for ABS(T) < 1.2 GeV**2.
Data taken with positrons of different longitudinal polarisation states in collision with unpolarised protons at HERA are used to measure the total cross sections of the charged current process, e^+ p \to \bar{\nu}X, for negative four-momentum transfer squared Q^2 > 400 GeV^2 and inelasticity y<0.9. Together with the corresponding cross section obtained from the previously published unpolarised data, the polarisation dependence of the charged current cross section is measured for the first time at high Q^2 and found to be in agreement with the Standard Model prediction.
Measured cross sections.
Deep-inelastic ep scattering data taken with the H1 detector at HERA and corresponding to an integrated luminosity of 106 pb^{-1} are used to study the differential distributions of event shape variables. These include thrust, jet broadening, jet mass and the C-parameter. The four-momentum transfer Q is taken to be the relevant energy scale and ranges between 14 GeV and 200 GeV. The event shape distributions are compared with perturbative QCD predictions, which include resummed contributions and analytical power law corrections, the latter accounting for non-perturbative hadronisation effects. The data clearly exhibit the running of the strong coupling alpha_s(Q) and are consistent with a universal power correction parameter alpha_0 for all event shape variables. A combined QCD fit using all event shape variables yields alpha_s(mZ) = 0.1198 \pm 0.0013 ^{+0.0056}_{-0.0043} and alpha_0 = 0.476 \pm 0.008 ^{+0.018} _{-0.059}.
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 14.0 to 16.0 GeV and X = 0.00841 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 16.0 to 20.0 GeV and X = 0.01180 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 20.0 to 30.0 GeV and X = 0.02090 .
The diffractive photoproduction of rho mesons, e p \to e rho Y, with large momentum transfer squared at the proton vertex, |t|, is studied with the H1 detector at HERA using an integrated luminosity of 20.1 pb^{-1}. The photon-proton centre of mass energy spans the range 75 < W < 95 GeV, the photon virtuality is restricted to Q^2 < 0.01 GeV^2 and the mass M_Y of the proton remnant is below 5 GeV. The t dependence of the cross section is measured for the range 1.5 < |t| < 10.0 GeV^2 and is well described by a power law, dsigma/ d|t| \propto |t|^{-n}. The spin density matrix elements, which provide information on the helicity structure of the interaction, are extracted using measurements of angular distributions of the rho decay products. The data indicate a violation of s-channel helicity conservation, with contributions from both single and double helicity-flip being observed. The results are compared to the predictions of perturbative QCD models.
The normalized differential cross section as a function of T.
Normalised decay angular distribution w.r.t. the polar angle THETA.
Normalised decay angular distribution w.r.t. the polar angle THETA.
Differential dijet cross sections are measured in photoproduction in the region of photon virtualities Q^2 < 1 GeV^2 with the H1 detector at the HERA ep collider using an integrated luminosity of 66.6 pb^{-1}. Jets are defined with the inclusive k_T algorithm and a minimum transverse momentum of the leading jet of 25 GeV is required. Dijet cross sections are measured in direct and resolved photon enhanced regions separately. Longitudinal proton momentum fractions up to 0.7 are reached. The data compare well with predictions from Monte Carlo event generators based on leading order QCD and parton showers and with next-to-leading order QCD calculations corrected for hadronisation effects.
Bin averaged cross sections for dijet photoproduction shown separately for high and low X(C=GAMMA).
Bin averaged cross sections for dijet photoproduction shown separately for high and low X(C=GAMMA) and for dijet mass > 65 GeV.
Bin averaged cross sections for dijet photoproduction shown separately for high and low XP.
A measurement of charm and beauty dijet photoproduction cross sections at the ep collider HERA is presented. Events are selected with two or more jets of transverse momentum $p_t^{jet}_{1(2)}>11(8)$ GeV in the central range of pseudo-rapidity $-0.9<\eta^{jet}_{1(2)}<1.3$. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 central vertex detector. Differential dijet cross sections for charm and beauty, and their relative contributions to the flavour inclusive dijet photoproduction cross section, are measured as a function of the transverse momentum of the leading jet, the average pseudo-rapidity of the two jets and the observable $x_{\gamma}^{obs}$. Taking into account the theoretical uncertainties, the charm cross sections are consistent with a QCD calculation in next-to-leading order, while the predicted cross sections for beauty production are somewhat lower than the measurement.
Total dijet CHARM cross section in the defined kinematic range.
Total dijet BOTTOM cross section in the defined kinematic range.
Measured CHARM cross section as a function of PT.