Showing 10 of 10 results
A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.
Observed and expected background and signal effective mass distributions for SR2j-2100. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where gluinos have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2200. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 800 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-2400. For signal, a gluino onestep decay model where gluinos have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1200. For signal, a squark direct decay model where squarks have mass of 900 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2000. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2400. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-3600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-1600. For signal, a gluino onestep decay model where gluinos have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR3j-1300. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1400. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1800. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2600. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-3000. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1700. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2000. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1800. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Cut-flow of Meff-2j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow of Meff-3j,4j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow of Meff-5j,6j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting squarks for SS direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting gluinos for GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting compressed mass-spectra signals for SS direct and GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
The results of a search for vector-like top quarks using events with exactly one lepton, at least four jets, and large missing transverse momentum are reported. The search is optimised for pair production of vector-like top quarks in the $Z(\rightarrow \! \! \nu \nu) \, t + X$ decay channel. LHC pp collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded by the ATLAS detector in 2015 and 2016 are used, corresponding to an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$. No significant excess over the Standard Model expectation is seen and upper limits on the production cross-section of a vector-like $T$ quark pair as a function of the $T$ quark mass are derived. The observed (expected) 95% CL lower limits on the $T$ mass are 870 GeV (890 GeV) for the weak-isospin singlet model, 1.05 TeV (1.06 TeV) for the weak-isospin doublet model and 1.16 TeV (1.17 TeV) for the pure $Zt$ decay mode. Limits are also set on the mass as a function of the decay branching ratios, excluding large parts of the parameter space for masses below 1 TeV.
Expected and observed 95% CL upper limit on the cross-section times branching ratio for VLQ $T$ pair production as a function of the $T$ mass for BR($T \rightarrow Zt$) = 100%.
Expected and observed 95% CL upper limit on the cross-section times branching ratio for VLQ $T$ pair production as a function of the $T$ mass for branching ratios according to the singlet model.
Expected and observed 95% CL upper limit on the cross-section times branching ratio for VLQ $T$ pair production as a function of the $T$ mass for branching ratios according to the doublet model. Contributions from the $X$ or $B$ quark in the $(X^{5/3}, T)$ or $(T, B)$ doublet models are neglected, leading to very conservative limits.
Expected 95% CL lower limit on the VLQ $T$ mass as a function of the decay branching ratios into $W b$ and $Ht$.
Observed 95% CL lower limit on the VLQ $T$ mass as a function of the decay branching ratios into $W b$ and $Ht$.
A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying tau lepton has been performed using 3.2 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015. Two exclusive final states are considered, with either exactly one or at least two tau leptons. No excess over the Standard Model prediction is observed in the data. Results are interpreted in the context of gauge-mediated supersymmetry breaking and a simplified model of gluino pair production with tau-rich cascade decays, substantially improving on previous limits. In the GMSB model considered, supersymmetry-breaking scale ($\Lambda$) values below 92 TeV are excluded at the 95% confidence level, corresponding to gluino masses below 2000 GeV. For large values of $\tan\beta$, values of $\Lambda$ up to 107 TeV and gluino masses up to 2300 GeV are excluded. In the simplified model, gluino masses are excluded up to 1570 GeV for neutralino masses around 100 GeV. Neutralino masses up to 700 GeV are excluded for all gluino masses between 800 GeV and 1500 GeV, while the strongest exclusion of 750 GeV is achieved for gluino masses around 1400 GeV.
mTtau distributions for "extended SR selections" of the 1 tau channel, for the Compressed SR selection without the mTtau > 80 GeV requirement. The last bin includes overflow events. Uncertainties are statistical only. Signal predictions are overlaid for several benchmark models, normalised to their predicted cross sections. For the simplified model, "LM" refers to a low mass splitting, or compressed scenario, with m(gluino)=665 GeV and m(neutralino)=585 GeV; "MM" stands for a medium mass splitting, with m(gluino)=1145 GeV and m(neutralino)=265 GeV; "HM" denotes a high mass splitting scenario, with m(gluino)=1305 GeV and m(neutralino)=105 GeV.
mTtau distributions for "extended SR selections" of the 1 tau channel, for the Medium Mass SR selection without the mTtau > 200 GeV requirement. The last bin includes overflow events. Uncertainties are statistical only. Signal predictions are overlaid for several benchmark models, normalised to their predicted cross sections. For the simplified model, "LM" refers to a low mass splitting, or compressed scenario, with m(gluino)=665 GeV and m(neutralino)=585 GeV; "MM" stands for a medium mass splitting, with m(gluino)=1145 GeV and m(neutralino)=265 GeV; "HM" denotes a high mass splitting scenario, with m(gluino)=1305 GeV and m(neutralino)=105 GeV.
mTtau distributions for "extended SR selections" of the 1 tau channel, for the High Mass SR selection without the mTtau > 200 GeV requirement. The last bin includes overflow events. Uncertainties are statistical only. Signal predictions are overlaid for several benchmark models, normalised to their predicted cross sections. For the simplified model, "LM" refers to a low mass splitting, or compressed scenario, with m(gluino)=665 GeV and m(neutralino)=585 GeV; "MM" stands for a medium mass splitting, with m(gluino)=1145 GeV and m(neutralino)=265 GeV; "HM" denotes a high mass splitting scenario, with m(gluino)=1305 GeV and m(neutralino)=105 GeV.
Kinematic distributions for "extended SR selections" of the 2-tau channel, for mTsum in the Compressed SR selection without the mTsum>1400 GeV requirement. The last bin includes overflow events. Cited uncertainties are statistical uncertainties only. Signal predictions are overlaid for several benchmark models, normalised to their predicted cross sections. For the simplified model, "MM" refers to a medium mass splitting, with m(gluino)=1145 GeV and m(neutralino)=265 GeV; "HM" denotes a high mass splitting scenario, with m(gluino)=1305 GeV and m(neutralino)=105 GeV. The GMSB benchmark model corresponds to Lambda = 90 TeV and tanbeta = 40.
Kinematic distributions for "extended SR selections" of the 2-tau channel, for mTtau1+mTtau2 in the High-Mass SR selection without the mTtau1+mTtau2>350GeV requirement. The last bin includes overflow events. Cited uncertainties are statistical uncertainties only. Signal predictions are overlaid for several benchmark models, normalised to their predicted cross sections. For the simplified model, "MM" refers to a medium mass splitting, with m(gluino)=1145 GeV and m(neutralino)=265 GeV; "HM" denotes a high mass splitting scenario, with m(gluino)=1305 GeV and m(neutralino)=105 GeV. The GMSB benchmark model corresponds to Lambda = 90 TeV and tanbeta = 40.
Kinematic distributions for "extended SR selections" of the 2-tau channel, for HT in the GMSB SR selection without the HT > 1700 GeV requirement. The last bin includes overflow events. Cited uncertainties are statistical uncertainties only. Signal predictions are overlaid for several benchmark models, normalised to their predicted cross sections. For the simplified model, "MM" refers to a medium mass splitting, with m(gluino)=1145 GeV and m(neutralino)=265 GeV; "HM" denotes a high mass splitting scenario, with m(gluino)=1305 GeV and m(neutralino)=105 GeV. The GMSB benchmark model corresponds to Lambda = 90 TeV and tanbeta = 40.
Expected exclusion contour at the 95% confidence level for the simplified model of gluino pair production, based on the combined results from the 1tau and 2tau channel. The result is obtained using 3.2 fb-1 of sqrt(s) = 13 TeV ATLAS data.
Observed exclusion contour at the 95% confidence level for the simplified model of gluino pair production, based on the combined results from the 1tau and 2tau channel. The result is obtained using 3.2 fb-1 of sqrt(s) = 13 TeV ATLAS data.
Expected exclusion contour at the 95% confidence level for the simplified model of gluino pair production, based on results from the 2tau channel. The result is obtained using 3.2 fb-1 of sqrt(s) = 13 TeV ATLAS data.
Expected exclusion contour at the 95% confidence level for the simplified model of gluino pair production, based on results from the 1tau channel. The result is obtained using 3.2 fb-1 of sqrt(s) = 13 TeV ATLAS data.
Observed exclusion contours at the 95% confidence level for the gauge-mediated supersymmetry-breaking model, based on results from the 2 tau channel. The result is obtained using 3.2 fb-1 of sqrt(s) = 13 TeV ATLAS data. Additional model parameters are M(mess) = 250 TeV, N5 = 3, mu>0 and Cgrav =1.
Expected exclusion contours at the 95% confidence level for the gauge-mediated supersymmetry-breaking model, based on results from the 2 tau channel. The result is obtained using 3.2 fb-1 of sqrt(s) = 13 TeV ATLAS data. Additional model parameters are M(mess) = 250 TeV, N5 = 3, mu>0 and Cgrav =1.
Observed upper cross section limits in pb for the simplified model of gluino pair production for the combination of all SRs.
Best expected signal region for the simplified model of gluino pair production. The respective SR has been used in the combination of the results.
Acceptance for the gluino production simplified model grid in the Compressed 1tau signal region.
Efficiency for the gluino production simplified model grid in the Compressed 1tau signal region.
Acceptance times Efficiency for the gluino production simplified model grid in the Compressed 1tau signal region.
Acceptance for the gluino production simplified model grid in the medium mass 1tau signal region.
Efficiency for the gluino production simplified model grid in the medium mass 1tau signal region.
Acceptance times Efficiency for the gluino production simplified model grid in the medium mass 1tau signal region.
Acceptance for the gluino production simplified model grid in the high mass 1tau signal region.
Efficiency for the gluino production simplified model grid in the high mass 1tau signal region.
Acceptance times Efficiency for the gluino production simplified model grid in the high mass 1tau signal region.
Acceptance for the gluino production simplified model grid in the compressed 2tau signal region.
Efficiency for the gluino production simplified model grid in the compressed 2tau signal region.
Acceptance times Efficiency for the gluino production simplified model grid in the compressed 2tau signal region.
Acceptance for the gluino production simplified model grid in the high mass 2tau signal region.
Efficiency for the gluino production simplified model grid in the high mass 2tau signal region.
Acceptance times Efficiency for the gluino production simplified model grid in the high mass 2tau signal region.
Acceptance for the GMSB model grid in the 2tau signal region.
Efficiency for the GMSB model grid in the 2tau signal region.
Acceptance times Efficiency for the GMSB model grid in the 2tau signal region.
The result of a search for pair production of the supersymmetric partner of the Standard Model bottom quark ($\tilde{b}_1$) is reported. The search uses 3.2 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=$13 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2015. Bottom squarks are searched for in events containing large missing transverse momentum and exactly two jets identified as originating from $b$-quarks. No excess above the expected Standard Model background yield is observed. Exclusion limits at 95% confidence level on the mass of the bottom squark are derived in phenomenological supersymmetric $R$-parity-conserving models in which the $\tilde{b}_1$ is the lightest squark and is assumed to decay exclusively via $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$, where $\tilde{\chi}_1^0$ is the lightest neutralino. The limits significantly extend previous results; bottom squark masses up to 800 (840) GeV are excluded for the $\tilde{\chi}_1^0$ mass below 360 (100) GeV whilst differences in mass above 100 GeV between the $\tilde{b}_1$ and the $\tilde{\chi}_1^0$ are excluded up to a $\tilde{b}_1$ mass of 500 GeV.
Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.
Signal region (SR) providing the best expected sensitivity in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane.
Cross-section upper limit in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the best expected signal region.
Cross-section upper limit in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA250 signal region.
Cross-section upper limit in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA350 signal region.
Cross-section upper limit in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA450 signal region.
Cross-section upper limit in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRB signal region.
Expected CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the best expected signal region.
Expected CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA250 signal region.
Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRA250.
Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRA250.
Expected CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA350 signal region.
Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRA350.
Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRA350.
Expected CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA450 signal region.
Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRA450.
Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRA450.
Expected CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRB signal region.
Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRB.
Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRB.
Observed CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the best expected signal region.
Observed CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA250 signal region.
Observed CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA350 signal region.
Observed CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA450 signal region.
Observed CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRB signal region.
Signal efficiency (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the best expected signal region.
Signal efficiency (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRA250 signal region.
Signal efficiency (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRA350 signal region.
Signal efficiency (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRA450 signal region.
Signal efficiency (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRB signal region.
Signal acceptance (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the best expected signal region.
Signal acceptance (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRA250 signal region.
Signal acceptance (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRA350 signal region.
Signal acceptance (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRA450 signal region.
Signal acceptance (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRB signal region.
Total experimental systematic uncertainty in percent on the signal efficiency times acceptance in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane. The best expected signal region selection is used per point.
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider (LHC) are reported. The search is based on proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 8$ TeV collected in 2012, corresponding to an integrated luminosity of 20 fb$^{-1}$. No significant excess above the Standard Model expectation is observed. Limits are set on the parameters of a minimal universal extra dimensions model, excluding a compactification radius of $1/R_c=950$ GeV for a cut-off scale times radius ($\Lambda R_c$) of approximately 30, as well as on sparticle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet inclusive signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}$ distribution in soft dimuon signal region. The last bin includes the overflow.
Observed and expected $m_{eff}^{incl}$ distribution in hard single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $m_{eff}^{incl}$ distribution for hard single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_{T}^{miss}$ distribution for hard single-lepton 6-jet signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard same-flavour dilepton low-multiplicity signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard same-flavour dilepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard opposite-flavour dilepton low-multiplicity signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard opposite-flavour dilepton 3-jet opposite-flavour signal region. The last bin includes the overflow.
Observed 95% exclusion contour for the mSUGRA/CMSSM model with $\tan\beta=30$, $A_{0}=-2m_{0}$ and $\mu > 0$.
Expected 95% exclusion contour for the mSUGRA/CMSSM model with $\tan\beta=30$, $A_{0}=-2m_{0}$ and $\mu > 0$.
Observed 95% exclusion contour for the bRPV MSUGRA/CMSSM model.
Expected 95% exclusion contour for the bRPV MSUGRA/CMSSM model.
Observed 95% exclusion contour for the natural gauge mediation with a stau NLSP model (nGM).
Expected 95% exclusion contour for the natural gauge mediation with a stau NLSP model (nGM).
Observed 95% exclusion contour for the non-universal higgs masses with gaugino mediation model (NUHMG).
Expected 95% exclusion contour for the non-universal higgs masses with gaugino mediation model (NUHMG).
Observed 95% exclusion contour for the minimal UED model from the combination of the hard dilepton and soft dilepton analyses.
Expected 95% exclusion contour for the minimal UED model from the combination of the hard dilepton and soft dilepton analyses.
Observed 95% exclusion contour for the minimal UED model from the hard dilepton analysis.
Expected 95% exclusion contour for the minimal UED model from the hard dilepton analysis.
Observed 95% exclusion contour for the minimal UED model from the soft dilepton analysis.
Expected 95% exclusion contour for the minimal UED model from the soft dilepton analysis.
Observed 95% exclusion contour for the simplified model with gluino-mediated top squark production where the top squark is assumed to decay exclusively via $\tilde{t} \rightarrow c \tilde{\chi}^{0}_{1}$.
Expected 95% exclusion contour for the simplified model with gluino-mediated top squark production, where the top squark is assumed to decay exclusively via $\tilde{t} \rightarrow c \tilde{\chi}^{0}_{1}$.
Observed 95% exclusion contour for the simplified model with gluino-mediated top squark production where the gluinos are assumed to decay exclusively through a virtual top squark, $\tilde{g} \rightarrow tt+\tilde{\chi}^{0}_{1}$.
Expected 95% exclusion contour for the simplified model with gluino-mediated top squark production where the gluinos are assumed to decay exclusively through a virtual top squark, $\tilde{g} \rightarrow tt+\tilde{\chi}^{0}_{1}$.
Observed 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the soft single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the soft single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the hard single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the hard single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the soft single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the soft single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the gluino simplified model from the hard single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the hard single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the gluino simplified model from the soft single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the soft single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the combination of soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the soft single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the soft single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the combination of the hard dilepton and hard single-lepton analyses.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the combination of the hard dilepton and hard single-lepton analyses.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard single-lepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard single-lepton analysis.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard dilepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard dilepton analysis.
Observed 95% exclusion contour for the two-step first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Expected 95% exclusion contour for the two-step first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Observed 95% exclusion contour for the two-step gluino simplified model without sleptons from the hard single-lepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model without sleptons from the hard single-lepton analysis.
Number of generated events in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Production cross-section in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Number of generated events in the the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV. squark decaying to quark neutralino1 with varying x.
Production cross-section in the the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Number of generated evens in the minimal UED model.
Production cross-section in the minimal UED model in pb.
Number of generated events in the two-step first- and second-generation squark simplified model with sleptons.
Production cross-section in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for soft single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for soft single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for soft single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for soft single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for soft single-lepton 3-jet inclusive signal region in the gluino simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for the soft single-lepton 3-jet inclusive signal region in the gluino simplified model for the case in x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is varied and the LSP mass is set at 60 GeV. The chargino mass is parameterised using x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)).
Observed CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is varied and the LSP mass is set at 60 GeV. The chargino mass is parameterised using x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)).
Acceptance for soft dimuon signal region in the minimal UED model (mUED).
Efficiency for soft dimuon signal region in minimal UED model (mUED).
Acceptance for hard dilepton 3-jet opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton 3jet opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton 3-jet same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton 3-jet same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton low-multiplicity opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton low-multiplicity opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton low-multiplicity same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton low-multiplicity same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Best expected signal region in the minimal UED model (mUED).
Expected CLs from hard dilepton analysis in the two-step first- and second-generation squark simplified model with sleptons.
Observed CLs from the hard dilepton analysis in the two-step first- and second-generation squark simplified model with sleptons.
Expected CLs from the combination of the soft dimuon and hard dilepton analyses in the minimal UED model (mUED).
Observed CLs from the combination of the soft dimuon and hard dilepton analyses in the minimal UED model (mUED).
Acceptance for hard single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 6-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 6-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 3-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 3-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Acceptance for hard single-lepton 5-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 5-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Acceptance for hard single-lepton 6-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 6-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% upper limit on the visible cross-section in the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% upper limit on the visible cross-section in the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% upper limit on the visible cross-section in the first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Observed 95% upper limit on the visible cross-section in the minimal UED model (mUED) from the combination of the soft dimuon and hard dilepton analyses.
The results of a search for top squark (stop) pair production in final states with one isolated lepton, jets, and missing transverse momentum are reported. The analysis is performed with proton--proton collision data at $\sqrt{s} = 8$ TeV collected with the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of $20$ fb$^{-1}$. The lightest supersymmetric particle (LSP) is taken to be the lightest neutralino which only interacts weakly and is assumed to be stable. The stop decay modes considered are those to a top quark and the LSP as well as to a bottom quark and the lightest chargino, where the chargino decays to the LSP by emitting a $W$ boson. A wide range of scenarios with different mass splittings between the stop, the lightest neutralino and the lightest chargino are considered, including cases where the $W$ bosons or the top quarks are off-shell. Decay modes involving the heavier charginos and neutralinos are addressed using a set of phenomenological models of supersymmetry. No significant excess over the Standard Model prediction is observed. A stop with a mass between $210$ and $640$ GeV decaying directly to a top quark and a massless LSP is excluded at $95$ % confidence level, and in models where the mass of the lightest chargino is twice that of the LSP, stops are excluded at $95$ % confidence level up to a mass of $500$ GeV for an LSP mass in the range of $100$ to $150$ GeV. Stringent exclusion limits are also derived for all other stop decay modes considered, and model-independent upper limits are set on the visible cross-section for processes beyond the Standard Model.
Expected and observed $H_{T,sig}^{miss}$ distribution for tN_med SR, before applying the $H_{T,sig}^{miss}>12$ requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed large-R jet mass distribution for tN_boost SR, before applying the large-R jet mass$>75$ GeV requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed b-jet multiplicity distribution for bCc_diag SR, before applying the b-jet multiplicity$=0$ requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed $am_{T2}$ distribution for bCd_high1 SR, before applying the $am_{T2}>200$ GeV requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed leading b-jet $p_T$ distribution for bCd_high2 SR, before applying the leading b-jet $p_T>170$ GeV requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed $E_T^{miss}$ distribution for tNbC_mix SR, before applying the $E_T^{miss}>270$ GeV requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed lepton $p_T$ distribution for bCa_low SR. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed lepton $p_T$ distribution for bCa_med SR. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed $am_T2$ distribution for bCb_med1 SR. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed $am_T2$ distribution for bCb_high SR. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Best expected signal region for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1$ three-body scenario ($\tilde t_1\to bW\chi^0_1$). This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1$ four-body scenario ($\tilde t_1\to bff'\chi^0_1$). This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=150$ GeV. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=106$ GeV. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+5$ GeV. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\tilde t_1}-10$ GeV. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\tilde t_1}=300$ GeV. This mapping is used for the final combined exclusion limits.
Upper limits on the model cross-section for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Observed exclusion contour for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Expected exclusion contour for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Upper limit on signal events for the $\tilde t_1$ three-body scenario ($\tilde t_1\to bW\chi^0_1$).
Observed exclusion contour for the $\tilde t_1$ three-body scenario ($\tilde t_1\to bW\chi^0_1$).
Expected exclusion contour for the $\tilde t_1$ three-body scenario ($\tilde t_1\to bW\chi^0_1$).
Upper limit on signal events for the $\tilde t_1$ four-body scenario ($\tilde t_1\to bff'\chi^0_1$).
Observed exclusion contour for the $\tilde t_1$ four-body scenario ($\tilde t_1\to bff'\chi^0_1$).
Expected exclusion contour for the $\tilde t_1$ four-body scenario ($\tilde t_1\to bff'\chi^0_1$).
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=150$ GeV.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=150$ GeV.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=150$ GeV.
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=106$ GeV.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=106$ GeV.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=106$ GeV.
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+5$ GeV.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+5$ GeV.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+5$ GeV.
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\tilde t_1}-10$ GeV.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\tilde t_1}-10$ GeV.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\tilde t_1}-10$ GeV.
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\tilde t_1}=300$ GeV.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\tilde t_1}=300$ GeV.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\tilde t_1}=300$ GeV.
Acceptance of tN_diag SR ($E_T^{miss}>150$ GeV, $m_T>140$ GeV) for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of tN_med SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of tN_boost SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCb_med2 SR ($am_{T2}>250$ GeV, $m_T>60$ GeV) for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCc_diag SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCd_bulk SR ($am_{T2}>175$ GeV, $m_T>120$ GeV) for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCd_high1 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCd_high2 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCa_med for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCa_low for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCb_med1 for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCb_high for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of 3-body SR ($80<am_{T2}<90$ GeV, $m_T>120$ GeV) for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$). The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of tNbC_mix SR for the asymmetric scenario ($\tilde t_1$, $\tilde t_1\to t\chi^0_1$, b $\chi^\pm_1$) with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Efficiency of tN_diag SR ($E_T^{miss}>150$ GeV, $m_T>140$ GeV) for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of tN_med SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of tN_boost SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCb_med2 SR ($am_{T2}>250$ GeV, $m_T>60$ GeV) for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCc_diag SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCd_bulk SR ($am_{T2}>175$ GeV, $m_T>120$ GeV) for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCd_high1 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCd_high2 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCa_med for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCa_low for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCb_med1 for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCb_high for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of 3-body SR ($80<am_{T2}<90$ GeV, $m_T>120$ GeV) for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$). The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of tNbC_mix SR for the asymmetric scenario ($\tilde t_1$, $\tilde t_1\to t\chi^0_1$, b $\chi^\pm_1$) with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Number of generated events for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Number of generated events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Number of generated events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV; $E_T^{miss}$(gen)$>60$ GeV.
Number of generated events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV; $E_T^{miss}$(gen)$>250$ GeV.
Number of generated events for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$).
Number of generated events for the asymmetric scenario ($\tilde t_1$, $\tilde t_1\to t\chi^0_1$, b $\chi^\pm_1$) with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Cross-section for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Cross-section for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Cross-section for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Cross-section for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$).
Cross-section for the asymmetric scenario ($\tilde t_1$, $\tilde t_1\to t\chi^0_1$, b $\chi^\pm_1$) with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Combined experimental systematic uncertainty of expected tN_diag SR yields for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$, using the 2 highest $E_T^{miss}$ and 2 highest $m_T$ bins.
Combined experimental systematic uncertainty of expected tN_med SR yields for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Combined experimental systematic uncertainty of expected tN_boost SR yields for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Combined experimental systematic uncertainty of expected bCb_med2 SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$, using the 2 highest $am_{T2}$ and 2 highest $m_T$ bins.
Combined experimental systematic uncertainty of expected bCc_diag SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Combined experimental systematic uncertainty of expected bCd_bulk SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$, using the 2 highest $am_{T2}$ and 2 highest $m_T$ bins.
Combined experimental systematic uncertainty of expected bCd_high1 SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Combined experimental systematic uncertainty of expected bCd_high2 SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Combined experimental systematic uncertainty of expected bCa_med SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Combined experimental systematic uncertainty of expected bCa_low SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Combined experimental systematic uncertainty of expected bCb_med1 SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Combined experimental systematic uncertainty of expected bCb_high SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Combined experimental systematic uncertainty of expected 3-body SR yields for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$), using the 2 lowest $am_{T2}$ and 2 highest $m_T$ bins.
Combined experimental systematic uncertainty of expected tNbC_mix SR yields for the asymmetric scenario ($\tilde t_1$, $\tilde t_1\to t\chi^0_1$, b $\chi^\pm_1$) with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed CLs in tN_diag SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Observed CLs in tN_med SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Observed CLs in tN_boost SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Observed CLs in bCb_med2 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed CLs in bCc_diag SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed CLs in bCd_bulk SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed CLs in bCd_high1 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed CLs in bCd_high2 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed CLs in bCa_med SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Observed CLs in bCa_low SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Observed CLs in bCb_med1 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Observed CLs in bCb_high SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Observed CLs in 3-body SR for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$).
Observed CLs in tNbC_mix SR for the mixed scenario (50% $\tilde t_1\to t\chi^0_1$, 50% $\tilde t_1\to b\chi^0_1$).
Expected CLs in tN_diag SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Expected CLs in tN_med SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Expected CLs in tN_boost SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Expected CLs in bCb_med2 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Expected CLs in bCc_diag SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Expected CLs in bCd_bulk SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Expected CLs in bCd_high1 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Expected CLs in bCd_high2 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Expected CLs in bCa_med SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Expected CLs in bCa_low SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Expected CLs in bCb_med1 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Expected CLs in bCb_high SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Expected CLs in 3-body SR for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$).
Expected CLs in tNbC_mix SR for the mixed scenario (50% $\tilde t_1\to t\chi^0_1$, 50% $\tilde t_1\to b\chi^\pm_1$).
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of $20.1 \rm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm} \rightarrow b W^{\left(\ast\right)} \tilde{\chi}_{1}^{0}$, where $\tilde{\chi}_{1}^{0}$ ($\tilde{\chi}_{1}^{\pm}$) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$. For a branching fraction of 100%, top squark masses in the range 270-645 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 30 GeV. For a branching fraction of 50% to either $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm}$, and assuming the $\tilde{\chi}_{1}^{\pm}$ mass to be twice the $\tilde{\chi}_{1}^{0}$ mass, top squark masses in the range 250-550 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 60 GeV.
Etmiss distribution for SRA1 and SRA2 after all selection requirements except those on Etmiss.
Etmiss distribution for SRA3 and SRA4 after all selection requirements except those on Etmiss.
Etmiss distribution for SRB after all selection requirements except those on Etmiss.
Etmiss distribution for SRC1 after all selection requirements except those on Etmiss.
Etmiss distribution for SRC2 after all selection requirements except those on Etmiss.
Etmiss distribution for SRC3 after all selection requirements except those on Etmiss.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=50%.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=50%.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=100%.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=100%.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=75%.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=75%.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=50%.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=50%.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=25%.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=25%.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=0%.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=0%.
Nominal observed excluded cross sections at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario, once corrected by the recorded luminosity and the efficiency times acceptance of the model itself.
Signal region (SR) combination providing the lowest expected CLs in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario.
Signal region (SR) combination providing the lowest expected CLs in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=75%.
Signal region (SR) combination providing the lowest expected CLs in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=50%.
Signal region (SR) combination providing the lowest expected CLs in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=25%.
Signal region (SR) combination providing the lowest expected CLs in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=0%.
Signal acceptance for the different signal regions (SR) in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario with both stops decaying to top+neutralino. The acceptance is defined in Appendix A of arXiv:1403.4853.
Signal efficiency for the different signal regions (SR) in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario with both stops decaying to top+neutralino.
Signal acceptance for the different signal regions (SR) in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario with both stops decaying to b+chargino. The acceptance is defined in Appendix A of arXiv:1403.4853.
Signal efficiency for the different signal regions (SR) in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario with both stops decaying to b+chargino.
Number of generated Monte Carlo events in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino.
Number of generated Monte Carlo events in the ( M(STOP), M(NEUTRALINO) ) mass plane in the stop pair production scenario where both stops decay to b+chargino.
Stop signal production cross sections in the ( M(STOP), M(NEUTRALINO) ) mass plane.
Total experimental systematic uncertainty in percent on the signal yield for SRA1 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRA2 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRA3 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRA4 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRB in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRC1 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRC2 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRC3 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Observed and expected CLs in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario. The value for the best expected signal region combination is shown.
Results from a search for supersymmetry in events with four or more leptons including electrons, muons and taus are presented. The analysis uses a data sample corresponding to 20.3 $fb^{-1}$ of proton--proton collisions delivered by the Large Hadron Collider at $\sqrt{s}$ = 8 TeV and recorded by the ATLAS detector. Signal regions are designed to target supersymmetric scenarios that can be either enriched in or depleted of events involving the production of a $Z$ boson. No significant deviations are observed in data from Standard Model predictions and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits at the 95% confidence level on the masses of relevant supersymmetric particles are obtained. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to electrons and muons, limits of 1350 GeV and 750 GeV are placed on gluino and chargino masses, respectively. In R-parity-conserving simplified models with heavy neutralinos decaying to a massless lightest supersymmetric particle, heavy neutralino masses up to 620 GeV are excluded. Limits are also placed on other supersymmetric scenarios.
The ETmiss distribution in VR0Z.
The effective mass distribution in VR0Z.
The ETmiss distribution in VR2Z.
The effective mass distribution in VR2Z.
The ETmiss distribution in SR0noZa.
The effective mass distribution in SR0noZa.
The ETmiss distribution in SR1noZa.
The effective mass distribution in SR1noZa.
The ETmiss distribution in SR2noZa.
The effective mass distribution in SR2noZa.
The ETmiss distribution in SR0noZb.
The effective mass distribution in SR0noZb.
The ETmiss distribution in SR1noZb.
The effective mass distribution in SR1noZb.
The ETmiss distribution in SR2noZb.
The effective mass distribution in SR2noZb.
The ETmiss distribution in SR0Z.
The effective mass distribution in SR0Z.
The ETmiss distribution in SR1Z.
The effective mass distribution in SR1Z.
The ETmiss distribution in SR2Z.
The effective mass distribution in SR2Z.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the R-slepton RPC model.
Expected 95% CL exclusion contour for the R-slepton RPC model.
Observed and expected 95% CL cross-section upper limits for the Stau RPC model, together with the theoretically predicted cross-section.
Observed and expected 95% CL cross-section upper limits for the Z RPC model, together with the theoretically predicted cross-section.
Observed 95% CL exclusion contour for the GGM tan beta = 1.5 model.
Expected 95% CL exclusion contour for the GGM tan beta = 1.5 model.
Observed 95% CL exclusion contour for the GGM tan beta = 30 model.
Expected 95% CL exclusion contour for the GGM tan beta = 30 model.
Observed 95% CL cross-section upper limit for the RPV chargino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV chargino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV gluino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV gluino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Lslepton NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Lslepton NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Rslepton NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Rslepton NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV sneutrino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV sneutrino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the R-slepton RPC model, and the selection of Z-veto signal regions used to set limits in this model. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bbb' means that the regions SR0noZb, SR1noZb and SR2noZb were used, in addition to the three Z-rich regions (SR0-2Z). For the RPC stau and Z models, the ``aaa' combination of regions was used throughout.
Performance of the SR0noZa selection in the R-slepton RPC model: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR0noZb selection in the RPV chargino NLSP model with lambda_121 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR1noZa selection in the RPV sneutrino NLSP model with lambda_233 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR1noZb selection in the RPV gluino NLSP model with lambda_133 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR2noZa selection in the RPV sneutrino NLSP model with lambda_233 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR2noZb selection in the RPV gluino NLSP model with lambda_133 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR0Z selection in the GGM tan beta = 30 model: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Cut flows for a representative selection of SUSY signal points in the Z-veto signal regions. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise.
Cut flows for a representative selection of SUSY signal points in the Z-rich signal regions. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses (or the value of mu in the case of GGM models). The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR0noZa signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The RPC R-slepton model is used, with (m2,m1) = (450,300) GeV.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR1noZb signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The RPV gluino NLSP model is used, with lambda_133 != 0 and (m2,m1) = (800,400) GeV.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR0Z signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the value of mu. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The GGM tan beta = 30 model is used, with (m2,m1) = (200,1000) GeV.
A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge, or at least three isolated leptons. The search also utilises jets originating from b-quarks, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample corresponding to a total integrated luminosity of 20.3 fb$^{-1}$ of $\sqrt{s} =$ 8 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider in 2012. No deviation from the Standard Model expectation is observed. New or significantly improved exclusion limits are set on a wide variety of supersymmetric models in which the lightest squark can be of the first, second or third generations, and in which R-parity can be conserved or violated.
Numbers of observed and background events for SR0b for each bin of the distribution in Meff. The table corresponds to Fig. 4(b). The statistical and systematic uncertainties are combined for the expected backgrounds.
Numbers of observed and background events for SR1b for each bin of the distribution in Meff. The table corresponds to Fig. 4(c). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3b for each bin of the distribution in Meff. The table corresponds to Fig. 4(a). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3L low for each bin of the distribution in Meff. The table corresponds to Fig. 4(d). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3L high for each bin of the distribution in Meff. The table corresponds to Fig. 4(e). The statistical and systematic uncertainties are combined for the predicted numbers.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The efficiencies are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The efficiencies are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The efficiencies are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into b s and gluinos decay into t stop (see Fig. 5d in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The efficiencies are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The acceptances (in percent, %) are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The acceptances (in percent, %) are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The acceptances (in percent, %) are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The acceptances (in percent, %) are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The limits on observed cross section are calculated for all simplified models. The simplified models are for direct pair production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair-production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop)-20 GeV.
The signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
Experimental uncertainties on the signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
Experimental uncertainties on the signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
Experimental uncertainties on the signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
Statistical uncertainties on the signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
Statistical uncertainties on the signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
Statistical uncertainties on the signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W ^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The confidence levels are calculated for all simplified models. For each model, the observed and expected values are given. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The confidence levels are calculated for all simplified models. For each model, the observed and expected values are given. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The confidence levels are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluion), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The confidence levels are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the expected and observed values are given. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The confidence levels are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the expected and observed values are given. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The confidence levels are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the expected and observed values are given.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The confidence levels are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the expected and observed values are given. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The results of a search for direct pair production of heavy top-quark partners in 4.7 fb-1 of integrated luminosity from pp collisions at sqrt(s) = 7 TeV collected by the ATLAS detector at the LHC are reported. Heavy top-quark partners decaying into a top quark and a neutral non-interacting particle are searched for in events with two leptons in the final state. No excess above the Standard Model expectation is observed. Limits are placed on the mass of a supersymmetric scalar top and of a spin-1/2 top-quark partner. A spin-1/2 top-quark partner with a mass between 300 GeV and 480 GeV, decaying to a top quark and a neutral non-interacting particle lighter than 100 GeV, is excluded at 95% confidence level.
(1) Number of generated MC events for the scalar top signal grid (2) Relative Cross section uncertainties for the scalar top signal grid.
(1) Acceptance of the same flavour selection for the scalar top signal grid (2) Selection efficiency of the same flavour selection for the scalar top signal grid (3) Product of the acceptance and efficiency of the same flavour selection for the scalar top signal grid (4) Relative experimental uncertainties on the acceptance times efficiency of the same flavour selection for the scalar top signal grid.
(1) Acceptance of the different flavour selection for the scalar top signal grid (2) Selection efficiency of the different flavour selection for the scalar top signal grid (3) Product of the acceptance and efficiency of the different flavour selection for the scalar top signal grid (4) Relative experimental uncertainties on the acceptance times efficiency of the different flavour selection for the scalar top signal grid.
(1) Number of generated MC events for the spin 1/2 top partner signal grid (2) Relative Cross section uncertainties for the spin 1/2 top partner signal grid.
(1) Acceptance of the same flavour selection for the spin 1/2 top partner signal grid (2) Selection efficiency of the same flavour selection for the spin 1/2 top partner signal grid (3) Product of the acceptance and efficiency of the same flavour selection for the spin 1/2 top partner signal grid (4) Relative experimental uncertainties on the acceptance times efficiency of the same flavour selection for the spin 1/2 top partner signal grid.
(1) Acceptance of the different flavour selection for the spin 1/2 top partner signal grid (2) Selection efficiency of the different flavour selection for the spin 1/2 top partner signal grid (3) Product of the acceptance and efficiency of the different flavour selection for the spin 1/2 top partner signal grid (4) Relative experimental uncertainties on the acceptance times efficiency of the different flavour selection for the spin 1/2 top partner signal grid.
(1) Observed CLs values for the scalar top signal grid (2) Expected CLs values for the scalar top signal grid.
(1) Observed CLs values for the spin 1/2 top partner signal grid (2) Expected CLs values for the spin 1/2 top partner signal grid.
Cross section limits [pb] for the scalar top signal grid.
Cross section limits [pb] for the spin 1/2 top partner signal grid.
Observed 95% CL limit for stop grid as a function of the scalar top and neutralino masses.
Observed 95% CL limit for stop grid as a function of the scalar top and neutralino masses, varying signal cross section of +1sigma.
Observed 95% CL limit for stop grid as a function of the scalar top and neutralino masses, varying signal cross section of -1sigma.
Expected 95% CL limit for stop grid as a function of the scalar top and neutralino masses.
Expected 95% CL limit for stop grid as a function of the scalar top and neutralino masses, varying the uncertainty of +1sigma.
Expected 95% CL limit for stop grid as a function of the scalar top and neutralino masses, varying the uncertainty of -1sigma.
Observed 95% CL limit for top partner grid as a function of the top partner and neutralino masses.
Observed 95% CL limit for top partner grid as a function of the top partner and neutralino masses, varying signal cross section of +1sigma.
Observed 95% CL limit for top partner grid as a function of the top partner and neutralino masses, varying signal cross section of -1sigma.
Expected 95% CL limit for top partner grid as a function of the top partner and neutralino masses.
Expected 95% CL limit for top partner grid as a function of the top partner and neutralino masses, varying the uncertainty of +1sigma.
Expected 95% CL limit for top partner grid as a function of the top partner and neutralino masses, varying the uncertainty of -1sigma.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.