Observation of D-pi Production Correlations in 500 GeV pi- - N Interactions

The E791 collaboration Aitala, E.M. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Lett.B 403 (1997) 185-190, 1997.
Inspire Record 422245 DOI 10.17182/hepdata.42255

We study the charge correlations between charm mesons produced in 500 GeV pi- - N interactions and the charged pions produced closest to them in phase space. With 110,000 fully reconstructed D mesons from experiment E791 at Fermilab, the correlations are studied as functions of the Dpi - D mass difference and of Feynman x. We observe significant correlations which appear to originate from a combination of sources including fragmentation dynamics, resonant decays, and charge of the beam.

1 data table

No description provided.


First Measurement of the T-odd Correlation between the Z0 Spin and the Three-jet Plane Orientation in Polarized Z0 Decays to Three Jets

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.Lett. 75 (1995) 4173-4177, 1995.
Inspire Record 400920 DOI 10.17182/hepdata.19601

We present the first measurement of the correlation between the $Z^0$ spin and the three-jet plane orientation in polarized $Z^0$ decays into three jets in the SLD experiment at SLAC utilizing a longitudinally polarized electron beam. The CP-even and T-odd triple product $\vec{S_Z}\cdot(\vec{k_1}\times \vec{k_2})$ formed from the two fastest jet momenta, $\vec{k_1}$ and $\vec{k_2}$, and the $Z^0$ polarization vector $\vec{S_Z}$, is sensitive to physics beyond the Standard Model. We measure the expectation value of this quantity to be consistent with zero and set 95\% C.L. limits of $-0.022 < \beta < 0.039$ on the correlation between the $Z^0$-spin and the three-jet plane orientation.

1 data table

Asymmetry extracted from formula: (1/SIG(Q=3JET))*D(SIG)/D(COS(OMEGA)) = 9/16*[(1-1/3*(COS(OMEGA))**2) + ASYM*Az*(1-2*Pmis(ABS(COS(OMEGA))))*COS(OMEGA)], where OMEGA is polar angle of [k1,k2] vector (jet-plane normal), Pmis is the p robability of misassignment of of jet-plane normal, Az is beam polarization. Jets were reconstructed using the 'Durham' jet algorithm with a jet-resol ution parameter Yc = 0.005.


An Improved measurement of alpha-s (M (Z0)) using energy correlations with the OPAL detector at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 276 (1992) 547-564, 1992.
Inspire Record 321657 DOI 10.17182/hepdata.29245

We report on an improved measurement of the value of the strong coupling constant σ s at the Z 0 peak, using the asymmetry of the energy-energy correlation function. The analysis, based on second-order perturbation theory and a data sample of about 145000 multihadronic Z 0 decays, yields α s ( M z 0 = 0.118±0.001(stat.)±0.003(exp.syst.) −0.004 +0.0009 (theor. syst.), where the theoretical systematic error accounts for uncertainties due to hadronization, the choice of the renormalization scale and unknown higher-order terms. We adjust the parameters of a second-order matrix element Monte Carlo followed by string hadronization to best describe the energy correlation and other hadronic Z 0 decay data. The α s result obtained from this second-order Monte Carlo is found to be unreliable if values of the renormalization scale smaller than about 0.15 E cm are used in the generator.

2 data tables

Value of LAMBDA(MSBAR) and ALPHA_S.. The first systematic error is experimental, the second is from theory.

The EEC and its asymmetry at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Errors include full statistical and systematic uncertainties.


Determination of alpha-s from energy-energy correlations measured on the Z0 resonance.

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 257 (1991) 469-478, 1991.
Inspire Record 324427 DOI 10.17182/hepdata.29467

We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).

3 data tables

Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.

ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.

ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.


Energy-energy correlations in hadronic final states from Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 252 (1990) 149-158, 1990.
Inspire Record 300161 DOI 10.17182/hepdata.29534

We have studied the energy-energy angular correlations in hadronic final states from Z 0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ (5) MS =104 +25 -20 ( stat. ) +25 -20( syst. ) +30 00 ) theor. ) . MeV, which corresponds to α s (91 GeV)=0.106±0.003(stat.)±0.003(syst.) +0.003 -0.000 (theor). The theoretical error stems from different choices for the renormalization scale of α s . In the Monte Carlo simulation the scale of α s as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.

2 data tables

Data requested from the authors.

Values of LAMBDA-MSBAR(5) and ALPHA-S(91 GeV) deduced from the EEC measurements. The second systematic error is from the theory.


A Measurement of energy correlations and a determination of alpha-s (M2 (Z0)) in e+ e- annihilations at s**(1/2) = 91-GeV

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 252 (1990) 159-169, 1990.
Inspire Record 298707 DOI 10.17182/hepdata.29525

From an analysis of multi-hadron events from Z 0 decays, values of the strong coupling constant α s ( M 2 Z 0 )=0.131±0.006 (exp)±0.002(theor.) and α s ( M z 0 2 ) = −0.009 +0.007 (exp.) −0.002 +0.006 (theor.) are derived from the energy-energy correlation distribution and its asymmetry, respectively, assuming the QCD renormalization scale μ = M Z 0 . The theoretical error accounts for differences between O ( α 2 s ) calculations. A two parameter fit Λ MS and the renormalization scale μ leads to Λ MS =216±85 MeV and μ 2 s =0.027±0.013 or to α s ( M 2 Z 0 )=0.117 +0.006 −0.008 (exp.) for the energy-energy correlation distribution. The energy-energy correlation asymmetry distribution is insensitive to a scale change: thus the α s value quoted above for this variable includes the theoretical uncertainty associated with the renormalization scale.

3 data tables

Data are at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Note that the systematic errors between bins are correlated.

Alpha-s determined from the EEC measurements. The systematic error is an error in the theory.

Alpha-s determined from the AEEC measurements. The systematic error is an error in the theory.


Charged Particle Correlations in $\bar{P} P$ Collisions at c.m. Energies of 200-{GeV}, 546-{GeV} and 900-{GeV}

The UA5 collaboration Ansorge, R.E. ; Åsman, B. ; Booth, C.N. ; et al.
Z.Phys.C 37 (1988) 191-213, 1988.
Inspire Record 263399 DOI 10.17182/hepdata.15683

We present data on two-particle pseudorapidity and multiplicity correlations of charged particles for non single-diffractive\(p\bar p - collisions\) at c.m. energies of 200, 546 and 900 GeV. Pseudorapidity correlations interpreted in terms of a cluster model, which has been motivated by this and other experiments, require on average about two charged particles per cluster. The decay width of the clusters in pseudorapidity is approximately independent of multiplicity and of c.m. energy. The investigations of correlations in terms of pseudorapidity gaps confirm the picture of cluster production. The strength of forward-backward multiplicity correlations increases linearly with ins and depends strongly on position and size of the pseudorapidity gap separating the forward and backward interval. All our correlation studies can be understood in terms of a cluster model in which clusters contain on average about two charged particles, i.e. are of similar magnitude to earlier estimates from the ISR.

3 data tables

Correlation strength for different choices of pseudorapidity intervals.

Correlation strength as a function of the central gap size for the symmetric data.

Correlation strength as a function of the centre of the separating gap for a gap size of 2.


Two Particle Correlations in 360-{GeV}/$c $p p Interactions

The EHS-RCBC collaboration Bailly, J.L. ; Banerjee, S. ; Bruyant, F. ; et al.
Z.Phys.C 40 (1988) 13, 1988.
Inspire Record 261311 DOI 10.17182/hepdata.15605

Two particle correlations of hadrons produced in 360 GeV/cpp interactions are investigated in the transverse plane and in rapidity. The data were obtained at the European hybrid spectrometer equipped with a rapid cycling bubble chamber. The observed transverse and rapidity correlations are compared with the one string LUND-and a two string dual parton-model. These models predict in general stronger correlations in the transverse plane and much weaker correlations in rapidity than found in the data. The LUND-FRITIOF-and multichain dual parton models provide a better reproduction of the data, although the agreement is not yet satisfactory. Only the UA5 cluster model GENCL shows agreement with the data.

1 data table

No description provided.


A Study of Energy-energy Correlations Between 12-{GeV} and 46.8-{GeV} {CM} Energies

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 36 (1987) 349-361, 1987.
Inspire Record 248660 DOI 10.17182/hepdata.1698

We present data on energy-energy correlations (EEC) and their related asymmetry (AEEC) ine+e− annihilation in the centre of mass energy range 12

10 data tables

Correlation function binned in cos(chi).

Correlation function binned in cos(chi).

Correlation function binned in cos(chi).

More…

Determination of $\alpha^- s$ From Energy-energy Correlations in $e^+ e^-$ Annihilation at 29-{GeV}

Wood, D.R. ; Petersen, A. ; Abrams, G.S. ; et al.
Phys.Rev.D 37 (1988) 3091, 1988.
Inspire Record 250899 DOI 10.17182/hepdata.23323

We have studied the energy-energy correlation in e+e− annihilation into hadrons at √s =29 GeV using the Mark II detector at the SLAC storage ring PEP. We find to O(αs2) that αs=0.158±0.003±0.008 if hadronization is described by string fragmentation. Independent fragmentation schemes give αs=0.10–0.14, and give poor agreement with the data. A leading-log shower fragmentation model is found to describe the data well.

6 data tables

Correlation data from the original PEP-5 detector.

Correlation Asymmetry data from the original PEP-5 detector.

Correlation data from the upgraded detector.

More…