Using 106 000 hadronic events obtained with the ALEPH detector at LEP at energies close to the Z resonance peak, the strong coupling constant α s is measured by an analysis of energy-energy correlations (EEC) and the global event shape variables thrust, C -parameter and oblateness. It is shown that the theoretical uncertainties can be significantly reduced if the final state particles are first combined in clusters using a minimum scaled invariant mass cut, Y cut , before these variables are computed. The combined result from all shape variables of pre-clustered events is α s ( M Z 2 = 0.117±0.005 for a renormalization scale μ= 1 2 M Z . For μ values between M Z and the b-quark mass, the result changes by −0.009 +0.006 .
No description provided.
Error contains both experimental and theoretical errors.
We report a measurement of the electroweak parameters sin2θw and ϱ based on the ratios of neutral current to charged current events measured in the Fermilab narrow-band neutrino beam at energies of 30–240 GeV. The data are fully corrected for radiative effects, heavy-quark production, and other effects. The best value for sin2θw obtained, sin2θw=0.239±0.011, is consistent with the most recent values fromW andZ production, as well as from other neutrino experiments.
No description provided.
No description provided.
The production of the neutralK− (892) resonances by 200 GeVK− andπ− has been studied over the kinematic range 0.0
No description provided.
No description provided.
No description provided.
We have measured the inclusive cross-section as a function of missing energy, due to the production of neutrinos or new weakly interacting neutral particles in 450 GeV/c proton-nucleus collisions, using calorimetric measurements of visible event energy. Upper limits are placed on the production of new particles as a function of their energy. These upper limits are typically an order
Differential single diffraction cross section.
Differential single diffraction cross section.
Differential single diffraction cross section.
We present a new high-statistics measurement of the cross section for the process e+e−→e+e−π+π− at a center-of-mass energy of 29 GeV for invariant pion-pair masses M(π+π−) between 350 MeV/c2 and 1.6 GeV/c2. We observe the f2(1270) and measure its radiative width to be 3.15±0.04±0.39 keV. We also observe an enhancement in the π+π− spectrum near 1 GeV. General agreement is found with unitarized models of the γγ→π+π− reaction that include final-state interactions.
No description provided.
Statistical errors only.
We examine the negative 3π final state produced in association with Δ++(1232) in the reaction γp→Δ++π+π−π− at an incident photon energy of 19.3 GeV. The most prominent enhancement in the 3π spectrum occurs at a mass and with a width consistent with the parameters of the a2(1320). This identification is confirmed by the various angular distributions. The a2 production cross section, corrected for efficiencies and alternate a2 decay modes, is 0.45±0.05 μb.
No description provided.
Deuteron spectra at laboratory angles from 30° to 90° were measured in α+(Pb, Cu, and C) collisions at 800, 600, and 200 MeV/nucleon, and α+(Pb and C) collisions at 400 MeV/nucleon. The coalescence relation between protons and deuterons was examined for the inclusive part of the spectra. The size of the interacting region was evaluated from the observed coalescence coefficients. The rms radius is typically 4–5 fm, depending of the target mass. The proton and deuteron energy spectra corresponding to central collisions were fitted assuming emission from a single source moving with a velocity intermediate between that of the projectile and the target. The extracted ‘‘temperatures’’ are independent of the nature of the emitted particle, indicating that the fragments have a common source. The best fits were achieved for 200- and 400-MeV/nucleon reactions. Spectra of deuteron-like pairs, including real deuterons and neutron-proton pairs that may be contained in a larger nuclear cluster, are compared to the prediction of an intranuclear cascade model incorporating a clustering algorithm based on a classical coalescence prescription. Best agreements between experimental and predicted deuteron-like spectra occur for 800- and 600-MeV/nucleon collisions.
No description provided.
No description provided.
No description provided.
The spin asymmetryAN for inclusive π0 production by 200-GeV transversely-polarized protons on a liquid hydrogen target has been measured at Fermilab over a wide range ofxF, with 0.5
No description provided.
False asymmetry calculated for events with average beam polarization of zero.
No description provided.
We report on a study of inclusive particle production in pp-interactions at 400 GeV/c. The data are based on 472 K reconstructed events recorded in the NA 27 experiment using the LEBC-EHS facility at CERN. The production cross sections are determined of pseudo scalar (π±,0, η andK±), scalar (f0(975)), vector (ρ±,0(770), ω(783), ϕ(1020),K*0(892), and\(\bar K^{ * 0} \)(892)), and tensorf0 mesons, of protons and antiprotons, and theΔ++,+,0(1232), and Λ(1520) baryon resonances in the forward hemisphere of the center of mass system, as well as longitudinal and transverse momentum distributions. The results are compared with predictions of the FRITIOF model and with other experimental data.
No description provided.
No description provided.
No description provided.
The multiplicity distributions of charged particles in restricted rapidity intervals inZ0 hadronic decays measured by the DELPHI detector are presented. The data reveal a shoulder structure, best visible for intervals of intermediate size, i.e. for rapidity limits around ±1.5. The whole set of distributions including the shoulder structure is reproduced by the Lund Parton Shower model. The structure is found to be due to important contributions from 3-and 4-jet events with a hard gluon jet. A different model, based on the concept of independently produced groups of particles, “clans”, fluctuating both in number per event and particle content per clan, has also been used to analyse the present data. The results show that for each interval of rapidity the average number of clans per event is approximately the same as at lower energies.
Data for both hemispheres.
Data for both hemispheres.
Data for both hemispheres.