None
No description provided.
Measurements are presented of the cross section ratios R ℓ = σ ℓ ( e + e − →ℓ + ℓ − ) σ h ( e + e − →hadrons) for ℓ=e, μ and τ using data taken from a scan around the Z 0 . The results are R e =(5.09± o .32±0.18)%, R μ =(0.46±0.35±0.17)% and R τ =(4.72±0.38±0.29)% where, for the ratio R e , the t -channel contribution has been subtracted. These results are consistent with the hypothesis of lepton universality and test this hypothesis at the energy scale s ∼8300 GeV 2 . The absolute cross sections σ ℓ (e + e − →ℓ + ℓ − ) have also been measured. From the cross sections the leptonic partial widths Γ e =(83.2±3.0±2.4) MeV, (Γ e Γ μ ) 1 2 =(84.6±3.0±2.4) MeV and (Γ e Γ τ ) 1 2 =(82.6±3.3±3.2) MeV have been extracted. Assuming lepton universality the ratio Γ ℓ Γ h =(4.89±0.20±0.12) × 10 −2 w was obtained, together with Γ ℓ =(83.6±1.8±2.2) MeV. The number of light neutrino species is determined to be N v =3.12±0.24±0.25. Al the data are consistent with the predictions of the standard model.
E+ E- final state is t-channel subtracted.
No t-channel subtraction. Statistical errors only.
We present direct measurements of the $Z~0$-lepton coupling asymmetry parameters, $A_e$, $A_\mu$, and $A_\tau$, based on a data sample of 12,063 leptonic $Z~0$ decays collected by the SLD detector. The $Z$ bosons are produced in collisions of beams of polarized $e~-$ with unpolarized $e~+$ at the SLAC Linear Collider. The couplings are extracted from the measurement of the left-right and forward-backward asymmetries for each lepton species. The results are: $A_e=0.152 \pm 0.012 {(stat)} \pm 0.001 {(syst)}$, $A_\mu=0.102 \pm 0.034 \pm 0.002$, and $A_\tau=0.195 \pm 0.034 \pm 0.003$.
No description provided.
This paper describes measurements of the semileptonic weak-neutral-current reactions νpμ→νpμ and ν¯pμ→ν¯pμ which yield the absolute differential cross sections dσ(νpμ)dQ2 and dσ(ν¯pμ)dQ2. The weak-neutral-current parameter, sin2θW, is determined to be sin2θW=0.220±0.016(stat.)(syst.)−0.031+0.023.
No description provided.
No description provided.
No description provided.
We present results of the total cross section differenceΔσТ obtained in transmission measurements at the energies 0.86, 0.88, 0.91 and 0.94 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was transmitted through the polarized Saclay frozen-spin proton target. The beam and target polarizations were oriented in the vertical direction. The present results agree with previous SATURNE measurements and improve the amplitude analysis in the forward direction.
No description provided.
Average of this result and data from Fontaine et al. 1991, Nucl.Phys. B358, 297 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+2233> RED = 2233 </a>).
The weak coupling constants of the electron, gVe and gAe, are determined from measurements of the total and differential cross sections for the reaction νμe→νμe. The data also place limits of interest on the magnitudes of a neutrino charge radius and a possible neutrino magnetic dipole moment.
Neutrino beam 0 - 5 GeV.
Total and differential cross sections for νμe→νμe and ν¯μe→ν¯μe are measured. Values for the model-independent neutral-current couplings of the electron are found to be gV=−0.107±0.035(stat)±0.028(syst) and gA=−0.514±0.023(stat)±0.028(syst). The electroweak mixing parameter sin2θW is determined to be 0.195±0.018(stat)±0.013(syst). Limits are set for the charge radius and magnetic moment of the neutrino as (〈r2〉)<0.24×10−32 cm2 and fμ<0.85×10−9 Bohr magnetons, respectively.
No description provided.
No description provided.
No description provided.
Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.
Cross section for the diffractive scattering process GAMMA* P --> DD X for a diffractive mass of 1.2 GeV and Q**2 = 2.7 GeV**2.
Cross section for the diffractive scattering process GAMMA* P --> DD X for a diffractive mass of 1.2 GeV and Q**2 = 4.0 GeV**2.
Cross section for the diffractive scattering process GAMMA* P --> DD X for a diffractive mass of 1.2 GeV and Q**2 = 6.0 GeV**2.
None
No description provided.
Diffractive photoproduction of D*+/-(2010) mesons was measured with the ZEUS detector at the ep collider HERA, using an integrated luminosity of 78.6 pb^{-1}. The D* mesons were reconstructed in the kinematic range: transverse momentum p_T(D*) > 1.9 GeV and pseudorapidity |eta(D*)| < 1.6, using the decay D*+ -> D0 pi+_s followed by D0 -> K- pi+ (+c.c.). Diffractive events were identified by a large gap in pseudorapidity between the produced hadronic state and the outgoing proton. Cross sections are reported for photon-proton centre-of-mass energies in the range 130 < W < 300 GeV and for photon virtualities Q^2 < 1 GeV^2, in two ranges of the Pomeron fractional momentum x_pom < 0.035 and x_pom < 0.01. The relative contribution of diffractive events to the inclusive D*+/-(2010) photoproduction cross section is about 6%. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with diffractive QCD factorisation.
Total cross section integrated over the given kinematic range.
Ratio of diffractive to inclusive D* cross section.
Differential cross sections for diffractive photoproduction of D*+- mesons as a function of X(NAME=POMERON).