Measurement of the inclusive isolated-photon production cross section in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
CERN-EP-2024-171, 2024.
Inspire Record 2803487 DOI 10.17182/hepdata.155181

The production cross section of inclusive isolated photons has been measured by the ALICE experiment at the CERN LHC in pp collisions at centre-of-momentum energy of $\sqrt{s}=13$ TeV collected during the LHC Run 2 data-taking period. The measurement is performed by combining the measurements of the electromagnetic calorimeter EMCal and the central tracking detectors ITS and TPC, covering a pseudorapidity range of $|\eta^{\gamma}|<0.67$ and a transverse momentum range of $7<p_{\rm T}^{\gamma}<200$ GeV/$c$. The result extends to lower $p_{\rm T}^{\gamma}$ and $x_{\rm T}^{\gamma} = 2p_{\rm T}^{\gamma}/\sqrt{s}$ ranges, the lowest $x_{\rm T}^{\gamma}$ of any isolated photon measurements to date, extending significantly those measured by the ATLAS and CMS experiments towards lower $p_{\rm T}^{\gamma}$ at the same collision energy with a small overlap between the measurements. The measurement is compared with next-to-leading order perturbative QCD calculations and the results from the ATLAS and CMS experiments as well as with measurements at other collision energies. The measurement and theory prediction are in agreement with each other within the experimental and theoretical uncertainties.

5 data tables

Differential cross section of isolated photons measured in pp collisions at 13 TeV.

pQCD NLO calculations with JETPHOX of the isolated-photon cross section as a function of $p_\mathrm{T}^{\gamma}$. The calculations were obtained by choosing factorisation, normalisation, and fragmentation scales equal to the photon transverse momentum ($\mu_{f}=\mu_{R}=\mu_{F}=p_\mathrm{T}^{\gamma}$). The parton distribution function used in the calculations is NNPDF4.0, and the fragmentation function is BFG II.

Ratio of isolated-photon cross sections measured in pp collisions at $\sqrt{s}=$13 TeV over the previous ALICE measurement at $\sqrt{s}=$7 TeV.

More…

Investigating strangeness enhancement with multiplicity in pp collisions using angular correlations

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
JHEP 09 (2024) 204, 2024.
Inspire Record 2789572 DOI 10.17182/hepdata.154226

A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson ${\rm K^0_S}$ and the double-strange baryon $\Xi^{\pm}$ is measured, in each event, in the azimuthal direction of the highest-$p_{\rm T}$ particle (``trigger" particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at $\sqrt{s}=5.02$ TeV and $\sqrt{s}=13$ TeV using the ALICE detector at the LHC. The per-trigger yields of ${\rm K^0_S}$ and $\Xi^{\pm}$ are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading $\Xi^{\pm}$/${\rm K^0_S}$ yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of $\Xi^{\pm}$ with respect to ${\rm K^0_S}$ is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The ${\rm K}^{0}_{\rm{S}}$ and $\Xi^{\pm}$ per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely PYTHIA 8.2 with the Monash tune, PYTHIA 8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of ${\rm K}^{0}_{\rm{S}}$ and $\Xi^{\pm}$.

18 data tables

Yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $-1.2<\Delta\eta<1.2$ and $-\pi/2<\Delta\varphi<3/2\pi$.

Transverse-to-leading yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $0.86<|\Delta\eta|<1.2$ and $0.96<\Delta\varphi<1.8$.

Toward-leading yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $|\Delta\eta|<0.86$ and $|\Delta\varphi|<1.1$.

More…

Measurement of $\Omega^0_{\rm c}$ baryon production and branching-fraction ratio ${\rm BR(\Omega^0_c \rightarrow \Omega^- e^+\nu_e)} / {\rm BR(\Omega^0_c \rightarrow \Omega^- \pi^+)}$ in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
Phys.Rev.D 110 (2024) 032014, 2024.
Inspire Record 2781241 DOI 10.17182/hepdata.153205

The inclusive production of the charm-strange baryon $\Omega^{0}_{\rm c}$ is measured for the first time via its semileptonic decay into $\Omega^{-}\rm e^{+}\nu_{e}$ at midrapidity ($|y|<0.8$) in proton$-$proton (pp) collisions at the centre-of-mass energy $\sqrt{s}=13$ TeV with the ALICE detector at the LHC. The transverse momentum ($p_{\rm T}$) differential cross section multiplied by the branching ratio is presented in the interval $2<p_{\rm T}<12~{\rm GeV}/c$. The branching-fraction ratio ${\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\rm e}^{+}\nu_{\rm e})/ {\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\pi}^{+})$ is measured to be 1.12 $\pm$ 0.22 (stat.) $\pm$ 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented.

3 data tables

The $p_{\rm T}$-differential production cross sections of inclusive $\Omega^0_{\rm c}$ baryons multiplied by the branching ratios (BR) into $\Omega^{-}{\rm e}^{+}\nu_{\rm e}$ in pp collisions at $\sqrt{s} =$ 13 TeV for $|y| < 0.8$.

$p_{\rm T}$-differential branching-fraction ratio ${\rm BR}(\Omega^0_{\rm c}\rightarrow\Omega^{-}{\rm e}^{+}\nu_{\rm e})/{\rm BR}(\Omega^0_{\rm c}\rightarrow\Omega^{-}{\pi}^{+})$.

Comparison of $p_{\rm T}$-independent branching-fraction ratio ${\rm BR}(\Omega^0_{\rm c}\rightarrow\Omega^{-}{\rm e}^{+}\nu_{\rm e})/{\rm BR}(\Omega^0_{\rm c}\rightarrow\Omega^{-}{\pi}^{+})$ between experiments and theoretical calculations.


Measurement of beauty-quark production in pp collisions at $\sqrt{s}=13$ TeV via non-prompt D mesons

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
JHEP 10 (2024) 110, 2024.
Inspire Record 2762380 DOI 10.17182/hepdata.154893

The $p_{\rm T}$-differential production cross sections of non-prompt ${\rm D^0}$, ${\rm D^+}$, and ${\rm D_s^+}$ mesons originating from beauty-hadron decays are measured in proton$-$proton collisions at a centre-of-mass energy $\sqrt{s}=13$ TeV. The measurements are performed at midrapidity, $|y| < 0.5$, with the data sample collected by ALICE from 2016 to 2018. The results are in agreement with predictions from several perturbative QCD calculations. The fragmentation fraction of beauty quarks to strange mesons divided by the one to non-strange mesons, $f_{\rm{s}}/(f_{\rm{u}} + f_{\rm{d}})$, is found to be $0.114 \pm 0.016~{\rm (stat.)} \pm 0.006~{\rm (syst.)} \pm 0.003~{\rm (BR)} \pm 0.003~{\rm (extrap.)}$. This value is compatible with previous measurements at lower centre-of-mass energies and in different collision systems in agreement with the assumption of universality of fragmentation functions. In addition, the dependence of the non-prompt D meson production on the centre-of-mass energy is investigated by comparing the results obtained at $\sqrt{s} = 5.02$ and 13 TeV, showing a hardening of the non-prompt D-meson $p_{\rm T}$-differential production cross section at higher $\sqrt{s}$. Finally, the ${\rm b\overline{b}}$ production cross section per unit of rapidity at midrapidity is calculated from the non-prompt ${\rm D^0}$, ${\rm D^+}$, ${\rm D_s^+}$, and $\Lambda_{\rm c}^+$ hadron measurements, obtaining ${\rm d}\sigma/{\rm d}y = 75.2\pm 3.2~(\mathrm{stat.}) \pm 5.2~(\mathrm{syst.})^{+12.3}_{-3.2} ~(\mathrm{extrap.})\text{ } \rm \mu b \;.$

11 data tables

$p_{\mathrm{T}}$-differential non-prompt $\mathrm{D}^{0}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{0}\rightarrow\mathrm{K}^-\pi^+$: $(3.95 \pm 0.03)\%$. Global relative uncertainty on BR: $0.8\%$ Global relative uncertainty on luminosity: $1.6\%$

$p_{\mathrm{T}}$-differential non-prompt $\mathrm{D}^{+}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{+}\rightarrow\mathrm{K}^-\pi^+\pi^+$: $(9.38 \pm 0.16)\%$. Global relative uncertainty on BR: $1.7\%$ Global relative uncertainty on luminosity: $1.6\%$

$p_{\mathrm{T}}$-differential $\mathrm{D}^{+}_\mathrm{s}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{+}_\mathrm{s}\rightarrow\phi\pi^+\rightarrow\mathrm{K}^+\mathrm{K}^-\pi^+$: $(2.22 \pm 0.06)\%$. Global relative uncertainty on BR: $2.7\%$ Global relative uncertainty on luminosity: $1.6\%$

More…

Studying the interaction between charm and light-flavor mesons

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.D 110 (2024) 032004, 2024.
Inspire Record 2750983 DOI 10.17182/hepdata.153245

The two-particle momentum correlation functions between charm mesons ($\mathrm{D^{*\pm}}$ and $\mathrm{D}^\pm$) and charged light-flavor mesons ($\pi^{\pm}$ and K$^{\pm}$) in all charge-combinations are measured for the first time by the ALICE Collaboration in high-multiplicity proton-proton collisions at a center-of-mass energy of $\sqrt{s} =13$ TeV. For $\mathrm{DK}$ and $\mathrm{D^*K}$ pairs, the experimental results are in agreement with theoretical predictions of the residual strong interaction based on quantum chromodynamics calculations on the lattice and chiral effective field theory. In the case of $\mathrm{D}\pi$ and $\mathrm{D^*}\pi$ pairs, tension between the calculations including strong interactions and the measurement is observed. For all particle pairs, the data can be adequately described by Coulomb interaction only, indicating a shallow interaction between charm and light-flavor mesons. Finally, the scattering lengths governing the residual strong interaction of the $\mathrm{D}\pi$ and $\mathrm{D^*}\pi$ systems are determined by fitting the experimental correlation functions with a model that employs a Gaussian potential. The extracted values are small and compatible with zero.

8 data tables

Genuine correlation function for $D^{+}\uppi^{-}$ in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV.

Genuine correlation function for $D^{+}\uppi^{+}$ in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV.

Genuine correlation function for $D^{+}K^{-}$ in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV.

More…

Investigating the nature of the K$^*_0(700)$ state with $\pi^\pm$K$^0_{\rm S}$ correlations at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 856 (2024) 138915, 2024.
Inspire Record 2739149 DOI 10.17182/hepdata.153749

The first measurements of femtoscopic correlations with the particle pair combinations $\pi^\pm$K$^0_{\rm S}$ in pp collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K$^*_0(700)$ particle that has been considered a tetraquark candidate for over forty years. Source and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction in the $\pi^\pm$K$^0_{\rm S}$ system is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K$^*_0(700)$. The small value and increase of the correlation strength with increasing source size support the hypothesis that the K$^*_0(700)$ is a four-quark state, i.e. a tetraquark state of the form $({\rm q_1},\overline{\rm q_2}, {\rm q_3}, \overline{\rm q_3})$ in which ${\rm q_1}$, ${\rm q_2}$, and ${\rm q_3}$ indicate the flavor of the valence quarks of the $\pi$ and K$^0_{\rm S}$. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K$^*_0(700)$ resonance.

12 data tables

Experimental $C(k^*)$, 0-100% mult. class, $k_{\rm T}>0$.

PYTHIA $C(k^*)$, 0-100% mult. class, $k_{\rm T}>0$.

Experimental $C(k^*)$, 0-100% mult. class, $k_{\rm T}<0.5$ GeV/$c$.

More…

Common femtoscopic hadron-emission source in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2023-267, 2023.
Inspire Record 2725934 DOI 10.17182/hepdata.152623

The femtoscopic study of pairs of identical pions is particularly suited to investigate the effective source function of particle emission, due to the resulting Bose-Einstein correlation signal. In small collision systems at the LHC, pp in particular, the majority of the pions are produced in resonance decays, which significantly affect the profile and size of the source. In this work, we explicitly model this effect in order to extract the primordial source in pp collisions at $\sqrt{s} = 13$ TeV from charged $\pi$-$\pi$ correlations measured by ALICE. We demonstrate that the assumption of a Gaussian primordial source is compatible with the data and that the effective source, resulting from modifications due to resonances, is approximately exponential, as found in previous measurements at the LHC. The universality of hadron emission in pp collisions is further investigated by applying the same methodology to characterize the primordial source of K-p pairs. The size of the primordial source is evaluated as a function of the transverse mass ($m_{\rm T}$) of the pairs, leading to the observation of a common scaling for both $\pi$-$\pi$ and K-p, suggesting a collective effect. Further, the present results are compatible with the $m_{\rm T}$ scaling of the p-p and p$-\Lambda$ primordial source measured by ALICE in high multiplicity pp collisions, providing compelling evidence for the presence of a common emission source for all hadrons in small collision systems at the LHC. This will allow the determination of the source function for any hadron--hadron pairs with high precision, granting access to the properties of the possible final-state interaction among pairs of less abundantly produced hadrons, such as strange or charmed particles.

29 data tables

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.2<$m_T$<1.4 GeV/$c^{2}$).

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.4<$m_T$<1.5 GeV/$c^{2}$).

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.5<$m_T$<1.8 GeV/$c^{2}$).

More…

Emergence of long-range angular correlations in low-multiplicity proton-proton collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.Lett. 132 (2024) 172302, 2024.
Inspire Record 2725922 DOI 10.17182/hepdata.150695

This Letter presents the measurement of near-side associated per-trigger yields, denoted ridge yields, from the analysis of angular correlations of charged hadrons in proton-proton collisions at $\sqrt{s}$ = 13 TeV. Long-range ridge yields are extracted for pairs of charged particles with a pseudorapidity difference of $1.4 < |\Delta\eta| < 1.8$ and a transverse momentum of $1 < p_{\rm T} < 2$ GeV/$c$, as a function of the charged-particle multiplicity measured at midrapidity. This study extends the measurements of the ridge yield to the low multiplicity region, where in hadronic collisions it is typically conjectured that a strongly-interacting medium is unlikely to be formed. The precision of the new low multiplicity results allows for the first direct quantitative comparison with the results obtained in $\mathrm {e^{+}e^{-}}$ collisions at $\sqrt{s}$ = 91 GeV and $\sqrt{s}$ = 183$-$209 GeV, where initial-state effects such as pre-equilibrium dynamics and collision geometry are not expected to play a role. In the multiplicity range $8\lesssim\langle N_\mathrm{ch}\rangle\lesssim 24$ where the $\mathrm {e^{+}e^{-}}$ results have good precision, the measured ridge yields in pp collisions are substantially larger than the limits set in $\mathrm {e^{+}e^{-}}$ annihilations. Consequently, the findings presented in this Letter suggest that the processes involved in $\mathrm {e^{+}e^{-}}$ annihilations do not contribute significantly to the emergence of long-range correlations in pp collisions.

1 data table

Ridge yield $Y_\mathrm{ridge}$ extracted at $1.4<|\Delta\eta|<1.8$ with $1.0<p_\mathrm{T,trig}<2.0\,\mathrm{GeV}/c$, $1.0<p_\mathrm{T,assoc}<2.0\,\mathrm{GeV}/c$ as a function of charged particle multiplicity counted at midrapidity $|\eta|<1.0$. The first three points at $N_\mathrm{ch}<8$ represent a 95% upper confidence limit where the statistical and systematic uncertainty have been combined.


Multiplicity dependence of charged-particle intra-jet properties in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2023-264, 2023.
Inspire Record 2725603 DOI 10.17182/hepdata.153919

The first measurement of the multiplicity dependence of intra-jet properties of leading charged-particle jets in proton-proton (pp) collisions is reported. The mean charged-particle multiplicity and jet fragmentation distributions are measured in minimum-bias and high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV using the ALICE detector. Jets are reconstructed from charged particles produced in the midrapidity region ($|\eta| < 0.9$) using the sequential recombination anti-$k_{\rm T}$ algorithm with jet resolution parameters $R$ = 0.2, 0.3, and 0.4 for the transverse momentum ($p_{\rm T}$) interval 5$-$110 GeV/$c$. High-multiplicity events are selected by the forward V0 scintillator detectors. The mean charged-particle multiplicity inside the leading jet cone rises monotonically with increasing jet $p_{\rm T}$ in qualitative agreement with previous measurements at lower energies. The distributions of jet fragmentation functions $z^{\rm ch}$ and $\xi^{\rm ch}$ are measured for different jet-$p_{\rm T}$ intervals. Jet-$p_{\rm T}$ independent fragmentation of leading jets is observed for wider jets except at high- and low-$z^{\rm ch}$. The observed "hump-backed plateau" structure in the $\xi^{\rm ch}$ distribution indicates suppression of low-$p_{\rm T}$ particles. In high-multiplicity events, an enhancement of the fragmentation probability of low-$z^{\rm ch}$ particles accompanied by a suppression of high-$z^{\rm ch}$ particles is observed compared to minimum-bias events. This behavior becomes more prominent for low-$p_{\rm T}$ jets with larger jet radius. The results are compared with predictions of QCD-inspired event generators, PYTHIA 8 with Monash 2013 tune and EPOS LHC. It is found that PYTHIA 8 qualitatively reproduces the jet modification in high-multiplicity events except at high jet $p_{\rm T}$. These measurements provide important constraints to models of jet fragmentation.

21 data tables

Mean number of charged particles ($\langle N_{\mathrm{ch}} \rangle$) within leading charged-particle jets as a function of $p_{T}^{\mathrm{jet, ch}}$ for minimum-bias (MB) pp collisions.

Mean number of charged particles ($\langle N_{\mathrm{ch}} \rangle$) within leading charged-particle jets as a function of $p_{T}^{\mathrm{jet, ch}}$ for high-multiplicity (HM) pp collisions.

The ratio of $\langle N_{\mathrm{ch}} \rangle$ between high-multiplicity (HM) and minimum-bias (MB) events as a function of $p_{T}^{\mathrm{jet, ch}}$ for pp collisions.

More…

Femtoscopic correlations of identical charged pions and kaons in pp collisions at $\sqrt{s}=13$ TeV with event-shape selection

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.C 109 (2024) 024915, 2024.
Inspire Record 2709104 DOI 10.17182/hepdata.146805

Collective behavior has been observed in high-energy heavy-ion collisions for several decades. Collectivity is driven by the high particle multiplicities that are produced in these collisions. At the CERN Large Hadron Collider (LHC), features of collectivity have also been seen in high-multiplicity proton-proton collisions that can attain particle multiplicities comparable to peripheral Pb-Pb collisions. One of the possible signatures of collective behavior is the decrease of femtoscopic radii extracted from pion and kaon pairs emitted from high-multiplicity collisions with increasing pair transverse momentum. This decrease can be described in terms of an approximate transverse mass scaling. In the present work, femtoscopic analyses are carried out by the ALICE Collaboration on charged pion and kaon pairs produced in pp collisions at $\sqrt{s}=13$ TeV from the LHC to study possible collectivity in pp collisions. The event-shape analysis method based on transverse sphericity is used to select for spherical versus jet-like events, and the effects of this selection on the femtoscopic radii for both charged pion and kaon pairs are studied. This is the first time this selection method has been applied to charged kaon pairs. An approximate transverse-mass scaling of the radii is found in all multiplicity ranges studied when the difference in the Lorentz boost for pions and kaons is taken into account. This observation does not support the hypothesis of collective expansion of hot and dense matter that should only occur in high-multiplicity events. A possible alternate explanation of the present results is based on a scenario of common emission conditions for pions and kaons in pp collisions for the multiplicity ranges studied.

74 data tables
More…